ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetical rank of lexsegment edge ideals

101   0   0.0 ( 0 )
 نشر من قبل Viviana Ene
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Isubset S=K[x_1,...,x_n]$ be a lexsegment edge ideal or the Alexander dual of such an ideal. In both cases it turns out that the arithmetical rank of $I$ is equal to the projective dimension of $S/I.$


قيم البحث

اقرأ أيضاً

112 - Anda Olteanu , Oana Olteanu , 2008
In this paper we characterize the componentwise lexsegment ideals which are componentwise linear and the lexsegment ideals generated in one degree which are Gotzmann.
Let $I_M$ and $I_N$ be defining ideals of toric varieties such that $I_M$ is a projection of $I_N$, i.e. $I_N subseteq I_M$. We give necessary and sufficient conditions for the equality $I_M=rad(I_N+(f_1,...,f_s))$, where $f_1,...,f_s$ belong to $I_M $. Also a method for finding toric varieties which are set-theoretic complete intersection is given. Finally we apply our method in the computation of the arithmetical rank of certain toric varieties and provide the defining equations of the above toric varieties.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter mine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
We determine the Castelnuovo-Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with $n$ vertices the maximum regularity grows as $2n/3$. We also bound the regularity by graph theoretic invariants and c onstruct a family of counterexamples to a conjecture of Hibi and Matsuda.
Let $G$ be a connected finite simple graph and let $I_G$ be the edge ideal of $G$. The smallest number $k$ for which $depth S/I_G^k$ stabilizes is denoted by $dstab(I_G)$. We show that $dstab(I_G)<ell(I_G)$ where $ell(I_G)$ denotes the analytic sprea d of $I$. For trees we give a stronger upper bound for $dstab(I_G)$. We also show for any two integers $1leq a<b$ there exists a tree for which $dstab(I_G)=a$ and $ell(I_G)=b$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا