ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Magnetically Driven Structural Phase Transition in Parent Compounds RFeAsO (R = La, Sm, Gd, Tb): study of low-temperature X-ray diffraction

137   0   0.0 ( 0 )
 نشر من قبل Zhuan Xu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of structural phase transition of four parent compounds $R$FeAsO ($R$ = La, Sm, Gd, and Tb) by means of low-temperature X-ray diffraction (XRD). Magnetic transition temperatures associated with Fe ions ($T_{N1}$) are also determined from the temperature dependence of resistivity. As $R$ is changed from La, through Sm and Gd, to Tb, both the c-axis and a-axis lattice constants decrease significantly. Meanwhile both the structural phase transition temperature ($T_S$) and $T_{N1}$ decrease monotonously. It is also found that the temperature gap between $T_S$ and $T_{N1}$ becomes smaller when the distance between FeAs layer becomes shorter. This result is consistent with magnetically driven structural phase transition and suggests that the dimensionality have an important effect on the AFM ordering.



قيم البحث

اقرأ أيضاً

The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high resolution x-ray diffraction is found to be sharp while the RFeAsO (R=La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe2As2 (A=Ca, Sr, Ba) 122 systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals.
147 - R. Klingeler , L. Wang , U. Kohler 2009
We present measurements of the thermal expansion coefficient $alpha$ of polycrystalline RFeAsO (R = La,Ce,Pr,Sm,Gd). Anomalies at the magnetic ordering transitions indicate a significant magneto-elastic coupling and a negative pressure dependence of $T_{rm N}$ . The structural transitions are associated by large anomalies in $alpha$. Rare earth magnetic ordering in CeFeAsO, PrFeAsO, and SmFeAsO yields large positive anomalies at low temperatures.
We report a structural transition found in Ca10(Ir4As8)(Fe2-xIrxAs2)5, which exhibits superconductivity at 16 K. The c-axis parameter is doubled below a structural transition temperature of approximately 100 K, while the tetragonal symmetry with spac e group P4/n (No.85) is unchanged at all temperatures measured. Our synchrotron x-ray diffraction study clearly shows iridium ions at a non-coplanar position shift along the z-direction at the structural phase transition. We discuss that the iridium displacements affect superconductivity in Fe2As2 layers.
We report a Raman scattering study of six rare earth orthoferrites RFeO3, with R = La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment of the observed phonon modes to vibrational symmetries and atomic displacements. The assignment of the spectra and their comparison throughout the whole series allows correlating the phonon modes with the orthorhombic structural distortions of RFeO3 perovskites. In particular, the positions of two specific Ag modes scale linearly with the two FeO6 octahedra tilt angles, allowing the distortion throughout the series. At variance with literature, we find that the two octahedra tilt angles scale differently with the vibration frequencies of their respective Ag modes. This behavior as well as the general relations between the tilt angles, the frequencies of the associated modes and the ionic radii are rationalized in a simple Landau model. The reported Raman spectra and associated phonon-mode assignment provide reference data for structural investigations of the whole series of orthoferrites.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffractio n confirmed all samples R3Ni2B2N3 with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La(3-x)R(x)Ni2B2N3 were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3 has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3 exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3 shows ferrimagnetic ordering below T_C = 17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا