ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated cosmic expansion in a scalar-field universe

203   0   0.0 ( 0 )
 نشر من قبل Ken-Ichi Nakao
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider here a spherically symmetric but inhomogeneous universe filled with a massless scalar field. The model obeys two constraints. The first one is that the gradient of the scalar field is timelike everywhere. The second constraint is that the radial coordinate basis vector is a unit vector field in the comoving coordinate system. We find that the resultant dynamical solutions compose a one-parameter family of self-similar models which is known as the Roberts solution. The solutions are divided into three classes. The first class consists of solutions with only one spacelike singularity in the synchronous-comoving chart. The second class consists of solutions with two singularities which are null and spacelike, respectively. The third class consists of solutions with two spacelike singularities which correspond to the big bang and big crunch, respectively. We see that, in the first case, a comoving volume exponentially expands as in an inflationary period; the fluid elements are accelerated outwards form the symmetry center, even though the strong energy condition is satisfied. This behavior is very different from that observed in the homogeneous and isotropic universe in which the fluid elements would move outwards with deceleration, if the strong energy conditions are satisfied. We are thus able to achieve the accelerated expansion of the universe for the models considered here, without a need to violate the energy conditions. The cosmological features of the models are examined in some detail.

قيم البحث

اقرأ أيضاً

Exponential expansion in Unimodular Gravity is possible even in the absence of a constant potential; {em id est} for free fields. This is at variance with the case in General Relativity.
We investigate if a recently introduced formulation of general relativity on a Weyl-integrable geometry, contains cosmological solutions exhibiting acceleration in the present cosmic expansion. We derive the general conditions to have acceleration in the expansion of the universe and obtain a particular solution for the Weyl scalar field describing a cosmological model for the present time in concordance with the data combination Planck + WP + BAO + SN.
72 - Marco Astorino 2013
In Einstein-Maxwell gravity with a conformally coupled scalar field, the black hole found by Bocharova, Bronnikov, Melnikov, and Bekenstein breaks when embedded in the external magnetic field of the Melvin universe. The situation improves in presence of acceleration, allowing one to build magnetised and accelerating BBMB black hole with a thin membrane. But to overcome this and others disadvantages of BBMB spacetimes, a new class of black holes, including the rotating case, is proposed for the conformal matter coupling under consideration.
We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 * H where zeta_0 a nd zeta_1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of zeta_0 and zeta_1 using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (zeta_0, zeta_1) is that of an expanding Universe beginning with a Big- Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z >= 1. However, when we assume zeta_1 = 0, the simple model zeta = zeta_0 evaluated at the best estimated value for zeta_0 satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.
We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ``Union data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient zeta and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for zeta and the Hubble constant Ho are: zeta=1.922 pm 0.089 and Ho=69.62 pm 0.59 km/s/Mpc with a chi^2=314. The age of the universe is found to be 14.95 pm 0.42 Gyr. We see that the estimated value of Ho as well as of chi^2 are very similar to those obtained from LCDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of zeta is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter Ho in order to study the sensibility of the results to the way how Ho is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how Ho is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا