ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear fragmentation reactions in extended media studied with Geant4 toolkit

93   0   0.0 ( 0 )
 نشر من قبل Igor Pshenichnov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known from numerous experiments that nuclear multifragmentation is a dominating mechanism for production of intermediate-mass fragments in nucleus-nucleus collisions at energies above 100 A MeV. In this paper we investigate the validity and performance of the Fermi break-up model and the statistical multifragmentation model implemented as parts of the Geant4 toolkit. We study the impact of violent nuclear disintegration reactions on the depth-dose profiles and yields of secondary fragments for beams of light and medium-weight nuclei propagating in extended media. Implications for ion-beam cancer therapy and shielding from cosmic radiation are discussed.



قيم البحث

اقرأ أيضاً

We study energy deposition by light nuclei in tissue-like media taking into account nuclear fragmentation reactions, in particular, production of secondary neutrons. The calculations are carried out within a Monte Carlo model for Heavy-Ion Therapy (M CHIT) based on the GEANT4 toolkit. Experimental data on depth-dose distributions for 135A-400A MeV C-12 and O-18 beams are described very well without any adjustment of the model parameters. This gives confidence in successful use of the GEANT4 toolkit for MC simulations of cancer therapy with beams of light nuclei. The energy deposition due to secondary neutrons produced by C-12 and Ne-20 beams in a (40-50 cm)^3 water phantom is estimated to 1-2% of the total dose, that is only slightly above the neutron contribution (~1%) induced by a 200 MeV proton beam.
We model the responses of Tissue-Equivalent Proportional Counters (TEPC) to radiation fields of therapeutic C-12 beams in a water phantom and to quasi-monoenergetic neutrons in a PMMA phantom. Simulations are performed with the Monte Carlo model for Heavy Ion Therapy (MCHIT) based on the Geant4 toolkit. The shapes of the calculated lineal energy spectra agree well with measurements in both cases. The influence of fragmentation reactions on the TEPC response to a narrow pencil-like beam with its width smaller than the TEPC diameter is investigated by Monte Carlo modeling. It is found that total lineal energy spectra are not very sensitive to the choice of the nuclear fragmentation model used. The calculated frequency-mean lineal energy y_f differs from the data on the axis of a therapeutic beam by less than 10% and by 10-20% at other TEPC positions. The validation of MCHIT with neutron beams gives us confidence in estimating the contributions to lineal energy spectra due to secondary neutrons produced in water by C-12 nuclei. As found, the neutron contribution at 10 cm distance from the beam axis amounts to ~ 50% close the entrance to the phantom and decreases to ~ 25% at the depth of the Bragg peak and beyond it. The presented results can help in evaluating biological out-of-field doses in carbon-ion therapy.
Depth distributions of positron-emitting nuclei in PMMA phantoms are calculated within a Monte Carlo model for Heavy-Ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.0). The calculated total production rates of $^{11}$C, $^{10}$C and $^{15} $O nuclei are compared with experimental data and with corresponding results of the FLUKA and POSGEN codes. The distributions of e$^+$ annihilation points are obtained by simulating radioactive decay of unstable nuclei and transporting positrons in surrounding medium. A finite spatial resolution of the Positron Emission Tomography (PET) is taken into account in a simplified way. Depth distributions of $beta^+$-activity as seen by a PET scanner are calculated and compared to available data for PMMA phantoms. The calculated $beta^+$-activity profiles are in good agreement with PET data for proton and $^{12}$C beams at energies suitable for particle therapy. The MCHIT capability to predict the $beta^+$-activity and dose distributions in tissue-like materials of different chemical composition is demonstrated.
We study the spatial distributions of $beta^+$-activity produced by therapeutic beams of $^3$He and $^{12}$C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for Heavy-Ion Therapy (MCHIT) based on the GEANT4 toolkit. The contributions from $^{10,11}$C, $^{13}$N, $^{14,15}$O, $^{17,18}$F and $^{30}$P positron-emitting nuclei were calculated and compared with experimental data obtained during and after irradiation. Positron emitting nuclei are created by $^{12}$C beam in fragmentation reactions of projectile and target nuclei. This leads to a $beta^+$-activity profile characterised by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. On the contrary, as the most of positron-emitting nuclei are produced by $^3$He beam in target fragmentation reactions, the calculated total $beta^+$-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the presence of $^{13}$N, $^{14}$O, $^{17,18}$F created in charge-transfer reactions by low-energy $^3$He ions close to the end of their range in several tissue-like media. The time evolution of $beta^+$-activity profiles was investigated for both kinds of beams. Due to the production of $^{18}$F nuclide the $beta^+$-activity profile measured 2 or 3 hours after irradiation with $^{3}$He ions will have a distinct peak correlated with the maximum of depth-dose distribution. We found certain advantages of low-energy $^{3}$He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow located tumours. In this case the distal edge of $beta^+$-activity distribution from $^{17}$F nuclei clearly marks the range of $^{3}$He in tissues.
A Geant4-based Monte Carlo model for Heavy-Ion Therapy (MCHIT) is used to study radiation fields of H-1, He-4, Li-7 and C-12 beams with similar ranges (~160-180 mm) in water. Microdosimetry spectra are simulated for wall-less and walled Tissue Equiva lent Proportional Counters (TEPCs) placed outside or inside a phantom, as in experiments performed, respectively, at NIRS, Japan and GSI, Germany. The impact of fragmentation reactions on microdosimetry spectra is investigated for He-4, Li-7 and C-12, and contributions from nuclear fragments of different charge are evaluated for various TEPC positions in the phantom. The microdosimetry spectra measured on the beam axis are well described by MCHIT, in particular, in the vicinity of the Bragg peak. However, the simulated spectra for the walled TEPC far from the beam axis are underestimated. Relative Biological Effectiveness (RBE) of the considered beams is estimated using a modified microdosimetric-kinetic model. Calculations show a similar rise of the RBE up to 2.2-2.9 close to the Bragg peak for helium, lithium and carbon beams compared to the modest values of 1-1.2 at the plateau region. Our results suggest that helium and lithium beams are also promising options for cancer therapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا