ﻻ يوجد ملخص باللغة العربية
Methods. We use the recently developed disk code ProDiMo to calculate the physico-chemical structure of protoplanetary disks and apply the Monte-Carlo line radiative transfer code RATRAN to predict observable line profiles and fluxes. We consider a series of Herbig Ae type disk models ranging from 10^-6 M_Sun to 2.2 10^-2 M_Sun (between 0.5 and 700 AU) to discuss the dependency of the line fluxes and ratios on disk mass for otherwise fixed disk parameters. Results. We find the [CII] 157.7 mum line to originate in LTE from the surface layers of the disk, where Tg > Td . The total emission is dominated by surface area and hence depends strongly on disk outer radius. The [OI] lines can be very bright (> 10^-16 W/m^2) and form in slightly deeper and closer regions under non-LTE conditions. The high-excitation [OI] 145.5 mum line, which has a larger critical density, decreases more rapidly with disk mass than the 63.2 mum line. Therefore, the [OI] 63.2 mum/145.5 mum ratio is a promising disk mass indicator, especially as it is independent of disk outer radius for Rout > 200 AU. CO is abundant only in deeper layers A_V >~ 0.05. For too low disk masses (M_disk <~10^-4 M_Sun) the dust starts to become transparent, and CO is almost completely photo-dissociated. For masses larger than that the lines are an excellent independent tracer of disk outer radius and can break the outer radius degeneracy in the [OI] 63.2 mum/[CII]157.7 mum line ratio. Conclusions. The far-IR fine-structure lines of [CII] and [OI] observable with Herschel provide a promising tool to measure the disk gas mass, although they are mainly generated in the atomic surface layers. In spatially unresolved observations, none of these lines carry much information about the inner, possibly hot regions < 30 AU.
Aims. We define a small and large chemical network which can be used for the quantitative simultaneous analysis of molecular emission from the near-IR to the submm. We revise reactions of excited molecular hydrogen, which are not included in UMIST, t
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the
The carbon monoxide rovibrational emission from discs around Herbig Ae stars and T Tauri stars with strong ultraviolet emissions suggests that fluorescence pumping from the ground X1 Sigma+ to the electronic A1 Pi state of CO should be taken into acc
Magnetic fields are fundamental to the accretion dynamics of protoplanetary disks and they likely affect planet formation. Typical methods to study the magnetic field morphology observe the polarization of dust or spectral lines. However, it has rece
Aims. We want to understand the chemistry and physics of disks on the basis of a large unbiased and statistically relevant grid of disk models. One of the main goals is to explore the diagnostic power of various gas emission lines and line ratios for