ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of late-type spiral galaxies: gas return from stellar populations regulates disk destruction and bulge growth

130   0   0.0 ( 0 )
 نشر من قبل Marie Martig
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spiral galaxies have most of their stellar mass in a large rotating disk, and only a modest fraction in a central spheroidal bulge. This poses a major challenge for cosmological models of galaxy formation. Galaxies form at the centre of dark matter halos through a combination of hierarchical merging and gas accretion along cold streams, and should rapidly grow their bulge through mergers and instabilities. Cosmological simulations predict galaxies to have most of their mass in the central bulge, and therefore an angular momentum much below the observed level, except in dwarf galaxies. We propose that the continuous return of fresh gas by stellar populations over cosmic times could solve this issue. A population of stars formed at a given instant typically returns half of its initial mass in the form of gas over 10 billion years, and the process is not dominated by rapid supernovae explosions but by the long-term mass-loss from low- and intermediate-mass stars. Using simulations of galaxy formation, we show that this recycling of gas can strongly affect the structural evolution of massive galaxies, potentially solving the bulge fraction issue: we find that the bulge-to-disk ratio of a massive galaxy can be divided by a factor of 3. The continuous recycling of baryons through star formation and stellar mass loss helps the growth of disks and their survival to interactions and mergers. Instead of forming only early-type, spheroid-dominated galaxies (S0 and ellipticals), the standard cosmological model can then successfully account for massive late-type, disk-dominated spiral galaxies (Sb-Sc).



قيم البحث

اقرأ أيضاً

(Abridged) As part of an ongoing effort to study the stellar nuclei of very late-type, bulge-less spirals, we present results from a high-resolution spectroscopic survey of nine such nuclear star clusters, undertaken with VLT/UVES. We fit the spectra with population synthesis models and measure Lick-type indices to determine mean luminosity-weighted ages, which range from 4.1*10^7 to 1.1*10^10 years and are insensitive to assumed metallicity or internal extinction. The average metallicity of nuclear clusters in late-type spirals is slightly sub-solar (<Z> = 0.015) but shows significant scatter. The fits also show that the nuclear cluster spectra are best described by a mix of several generations of stars. This is supported by the fact that only models with composite stellar populations yield mass-to-light ratios that match those obtained from dynamical measurements. The last star formation episode was on average 34 Myr ago, while all clusters experienced some star formation in the last 100 Myr. We thus conclude that the nuclear clusters undergo repeated episodes of star formation. The robustness with respect to possible contamination from the underlying galaxy disk is demonstrated by comparison to spectra obtained with HST/STIS. Combining these results with those from Walcher et al. (2005), we have thus shown that the stellar nuclei of these bulge-less galaxies are massive and dense star clusters that form stars recurrently until the present day. This unique set of properties is likely due to the central location of these clusters in their host galaxies.
218 - Aaron A. Dutton 2010
We investigate the origin of the relations between stellar mass and optical circular velocity for early-type (ETG) and late-type (LTG) galaxies --- the Faber-Jackson (FJ) and Tully-Fisher (TF) relations. We combine measurements of dark halo masses (f rom satellite kinematics and weak lensing), and the distribution of baryons in galaxies (from a new compilation of galaxy scaling relations), with constraints on dark halo structure from cosmological simulations. The principle unknowns are the halo response to galaxy formation and the stellar initial mass function (IMF). The slopes of the TF and FJ relations are naturally reproduced for a wide range of halo response and IMFs. However, models with a universal IMF and universal halo response cannot simultaneously reproduce the zero points of both the TF and FJ relations. For a model with a universal Chabrier IMF, LTGs require halo expansion, while ETGs require halo contraction. A Salpeter IMF is permitted for high mass (sigma > 180 km/s) ETGs, but is inconsistent for intermediate masses, unless V_circ(R_e)/sigma_e > 1.6. If the IMF is universal and close to Chabrier, we speculate that the presence of a major merger may be responsible for the contraction in ETGs while clumpy accreting streams and/or feedback leads to expansion in LTGs. Alternatively, a recently proposed variation in the IMF disfavors halo contraction in both types of galaxies. Finally we show that our models naturally reproduce flat and featureless circular velocity profiles within the optical regions of galaxies without fine-tuning.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in n ormal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
126 - Philip F. Hopkins 2011
We use numerical simulations of isolated galaxies to study the effects of stellar feedback on the formation and evolution of giant star-forming gas clumps in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound gas-rich clumps whose properties initially depend only on global disk properties, not the microphysics of feedback. In simulations without stellar feedback, clumps turn an order-unity fraction of their mass into stars and sink to the center, forming a large bulge and kicking most of the stars out into a much more extended stellar envelope. By contrast, strong radiative stellar feedback disrupts even the most massive clumps after they turn ~10-20% of their mass into stars, in a timescale of ~10-100 Myr, ejecting some material into a super-wind and recycling the rest of the gas into the diffuse ISM. This suppresses the bulge formation rate by direct clump coalescence by a factor of several. However, the galactic disks do undergo significant internal evolution in the absence of mergers: clumps form and disrupt continuously and torque gas to the galactic center. The resulting evolution is qualitatively similar to bar/spiral evolution in simulations with a more homogeneous ISM.
We present the results of a photometric redshift analysis designed to identify z>6 galaxies from the near-IR HST imaging in three deep fields (HUDF, HUDF09-2 & ERS). By adopting a rigorous set of criteria for rejecting low-z interlopers, and by emplo ying a deconfusion technique to allow the available IRAC imaging to be included in the candidate selection process, we have derived a robust sample of 70 Lyman-break galaxies (LBGs) spanning the redshift range 6.0<z<8.7. Based on our final sample we investigate the distribution of UV spectral slopes (beta), finding a variance-weighted mean value of <beta>=-2.05 +/- 0.09 which, contrary to some previous results, is not significantly bluer than displayed by lower-redshift starburst galaxies. We confirm the correlation between UV luminosity and stellar mass reported elsewhere, but based on fitting galaxy templates featuring a range of star-formation histories, metallicities and reddening we find that, at z>=6, the range in mass-to-light ratio (M*/L_UV) at a given UV luminosity could span a factor of ~50. Focusing on a sub-sample of twenty-one candidates with IRAC detections at 3.6-microns we find that L* LBGs at z~6.5 have a median stellar mass of M* = (2.1 +/- 1.1) x 10^9 Msun and a median specific star-formation rate of 1.9 +/- 0.8 Gyr^-1. Using the same sub-sample we have investigated the influence of nebular continuum and line emission, finding that for the majority of candidates (16 out of 21) the best-fitting stellar-mass estimates are reduced by less than a factor of 2.5. Finally, a detailed comparison of our final sample with the results of previous studies suggests that, at faint magnitudes, several high-redshift galaxy samples in the literature are significantly contaminated by low-redshift interlopers (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا