ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling waves of selective sweeps

263   0   0.0 ( 0 )
 نشر من قبل Rick Durrett
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of cancer genome sequencing projects is to determine the genetic alterations that cause common cancers. Many malignancies arise during the clonal expansion of a benign tumor which motivates the study of recurrent selective sweeps in an exponentially growing population. To better understand this process, Beerenwinkel et al. [PLoS Comput. Biol. 3 (2007) 2239--2246] consider a Wright--Fisher model in which cells from an exponentially growing population accumulate advantageous mutations. Simulations show a traveling wave in which the time of the first $k$-fold mutant, $T_k$, is approximately linear in $k$ and heuristics are used to obtain formulas for $ET_k$. Here, we consider the analogous problem for the Moran model and prove that as the mutation rate $muto0$, $T_ksim c_klog(1/mu)$, where the $c_k$ can be computed explicitly. In addition, we derive a limiting result on a log scale for the size of $X_k(t)={}$the number of cells with $k$ mutations at time $t$.

قيم البحث

اقرأ أيضاً

Freshwater Unionid bivalves have recently faced ecological upheaval through pollution, barriers to dispersal, human harvesting, and changes in fish-host prevalence. Currently, over 70% of species are threatened, endangered or extinct. To characterize the genetic response to these recent selective pressures, we collected population genetic data for one successful bivalve species, Megalonaias nervosa. We identify megabase sized regions that are nearly monomorphic across the population, a signal of strong, recent selection reshaping genetic diversity. These signatures of selection encompass a total of 73Mb, greater response to selection than is commonly seen in population genetic models. We observe 102 duplicate genes with high dN/dS on terminal branches among regions with sweeps, suggesting that gene duplication is a causative mechanism of recent adaptation in M. nervosa. Genes in sweeps reflect functional classes known to be important for Unionid survival, including anticoagulation genes important for fish host parasitization, detox genes, mitochondria management, and shell formation. We identify selective sweeps in regions with no known functional impacts, suggesting mechanisms of adaptation that deserve greater attention in future work on species survival. In contrast, polymorphic transposable element insertions appear to be detrimental and underrepresented among regions with sweeps. TE site frequency spectra are skewed toward singleton variants, and TEs among regions with sweeps are present only at low frequency. Our work suggests that duplicate genes are an essential source of genetic novelty that has helped this successful species succeed in environments where others have struggled. These results suggest that gene duplications deserve greater attention in non-model population genomics, especially in species that have recently faced sudden environmental challenges.
In this paper we prove that a class of non self-adjoint second order differential operators acting in cylinders $Omegatimesmathbb Rsubseteqmathbb R^{d+1}$ have only real discrete spectrum located to the right of the right most point of the essential spectrum. We describe the essential spectrum using the limiting properties of the potential. To track the discrete spectrum we use spatial dynamics and bi-semigroups of linear operators to estimate the decay rate of eigenfunctions associated to isolated eigenvalues.
100 - Robi Peschanski 2009
We define a mapping of the QCD Balitsky-Kovchegov equation in the diffusive approximation with noise and a generalized coupling allowing a common treatment of the fixed and running QCD couplings. It corresponds to the extension of the stochastic Fish er and Kolmogorov-Petrovsky-Piscounov equation to the radial wave propagation in a medium with negative-gradient absorption responsible for anomalous diffusion,non-integer dimension and damped noise fluctuations. We obtain its analytic traveling wave solutions with a new scaling curve and in particular for running coupling a new scaling variable allowing to extend the range and validity of the geometric-scaling QCD prediction beyond the previously known domain.
We describe the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. After the initial impact strikes the system, a characteristic wave structure emerges and continuo usly decays as it propagates through the lattice. Using an extension of the binary collision approximation (BCA) for one-dimensional chains, we predict its decay rate, which compares well with numerical simulations and experimental data. While the hexagonal lattice does not support constant speed traveling waves, we provide scaling relations that characterize the power law decay of the wave velocity. Lastly, we discuss the effects of weak disorder on the directional amplitude decay rates.
The most attractive application of fluid-based thermoacoustic (TA) energy conversion involves traveling wave devices due to their low onset temperature ratios and high growth rates. Recently, theoretical and numerical studies have shown that thermoac oustic effects can exist also in solids. However, these initial studies only focus on standing waves. This paper presents a numerical study investigating the existence of self-sustained thermoelastic oscillations associated with traveling wave modes in a looped solid rod under the effect of a localized thermal gradient. Configurations having different ratios of the rod radius $R$ to the thermal penetration depth $delta_k$ were explored and the traveling wave component (TWC) was found to become dominant as $R$ approaches $delta_k$. The growth-rate-to-frequency ratio of the traveling TA wave is found to be significantly larger than that of the standing wave counterpart for the same wavelength. The perturbation energy budgets are analytically formulated and closed, shedding light onto the energy conversion processes of solid-state thermoacoustic (SSTA) engines and highlighting differences with fluids. Efficiency is also quantified based on the thermoacoustic production and dissipation rates evaluated from the energy budgets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا