ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a trace-like invariant for the irreducible representations of a finite dimensional complex Hopf algebra H. We do so by considering the trace of the map induced by the antipode S on the endomorphisms End(V) of a self-dual module V. We also compute the values of this trace for the representations of two non-semisimple Hopf algebras: u_q(sl_2) and D(H_n(q)), the Drinfeld double of the Taft algebra.
We derive a formula for the trace of the antipode on endomorphism algebras of simple self-dual modules of nilpotent liftings of quantum planes. We show that the trace is equal to the quantum dimension of the module up to a nonzero scalar depending on the simple module.
Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that
Let H be a non-semisimple Hopf algebra of dimension 2p^2 over an algebraically closed field of characteristic zero, where p is an odd prime. We prove that H or H^* is pointed, which completes the classification for Hopf algebras of these dimensions.
We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra wi