ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

75   0   0.0 ( 0 )
 نشر من قبل Patrick C. McGuire
 تاريخ النشر 2009
والبحث باللغة English




اسأل ChatGPT حول البحث

(ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.



قيم البحث

اقرأ أيضاً

We have used a simple camera phone to significantly improve an `exploration system for astrobiology and geology. This camera phone will make it much easier to develop and test computer-vision algorithms for future planetary exploration. We envision t hat the `Astrobiology Phone-cam exploration system can be fruitfully used in other problem domains as well.
72 - C. Kato , W. Kihara , Y. Ko 2021
Muon detectors and neutron monitors were recently installed at Syowa Station, in the Antarctic, to observe different types of secondary particles resulting from cosmic ray interactions simultaneously from the same location. Continuing observations wi ll give new insight into the response of muon detectors to atmospheric and geomagnetic effects. Operation began in February, 2018 and the system has been stable with a duty-cycle exceeding 94%. Muon data shows a clear seasonal variation, which is expected from the atmospheric temperature effect. We verified successful operation by showing that the muon and neutron data are consistent with those from other locations by comparing intensity variations during a space weather event. We have established a web page to make real time data available with interactive graphics (http://polaris.nipr.ac.jp/~cosmicrays/).
108 - T. Dyson , H. C. Chiang , E. Egan 2020
The frequencies of interest for redshifted 21 cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122 hours of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20-125 MHz. In particular, the FM broadcast band (88-108 MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.
The ExoMars Trace Gas Orbiter (TGO) was sent to Mars in March 2016 to search for trace gases diagnostic of active geological or biogenic processes. We report the first observation of the spectral features of Martian ozone (O3) in the mid-infrared ran ge using the Atmospheric Chemistry Suite (ACS) Mid-InfaRed (MIR) channel, a cross-dispersion spectrometer operating in solar occultation mode with the finest spectral resolution of any remote sensing mission to Mars. Observations of ozone were made at high northern latitudes (>65N) prior to the onset of the 2018 global dust storm (Ls = 163-193). During this fast transition phase between summer and winter ozone distribution, the O3 volume mixing ratio observed is 100-200 ppbv near 20 km. These amounts are consistent with past observations made at the edge of the southern polar vortex in the ultraviolet range. The observed spectral signature of ozone at 3000-3060 cm-1 directly overlaps with the spectral range of the methane (CH4) nu3 vibration-rotation band, and it, along with a newly discovered CO2 band in the same region, may interfere with measurements of methane abundance.
One of the most ubiquitous features of quantum theories is the existence of zero-point fluctuations in their ground states. For massive quantum fields, these fluctuations decouple from infrared observables in ordinary field theories. However, there i s no decoupling theorem in Quantum Gravity, and we recently showed that the vacuum stress fluctuations of massive quantum fields source a red spectrum of metric fluctuations given by $sim$ mass$^5$/frequency in Planck units. I show that this signal is consistent with the reported unattributed persistent noise, or mystery noise, in the Laser Interferometer Gravitational-Wave Observatory (LIGO), for the Standard Model of Particle Physics. If this interpretation is correct, then it implies that: 1) This will be a fundamental irreducible noise for all gravitational wave interferometers, and 2) There is no fundamental weakly-coupled massive particle heavier than those in the Standard Model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا