ﻻ يوجد ملخص باللغة العربية
New spectra from the FINUDA experiment of the Non Mesonic Weak Decay (NMWD) proton kinetic energy for 9(Lambda)Be, 11(Lambda)B, 12(Lambda)C, 13(Lambda)C, 15 (Lambda)N and 16(Lambda)O are presented and discussed along with the published data on 5(Lambda)He and 7(Lambda)Li. Exploiting the large mass number range and the low energy threshold (15 MeV) for the proton detection of FINUDA, an evaluation of both Final State Interactions (FSI) and the two nucleon induced NMWD contributions to the decay process has been done. Based on this evaluation, a linear dependence of FSI on the hypernuclear mass number A is found and for the two nucleon stimulated decay rate the experimental value of Gamma2/Gammap=0.43+-0.25 is determined for the first time. A value for the two nucleon stimulated decay rate to the total decay rate Gamma2/GammaNMWD=0.24+-0.10 is also extracted.
Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained
The decay of $Lambda$-hypernuclei without pion emission, known as Non Mesonic Weak Decay (NMWD), gives an effective tool to investigate $Delta$S=1 four-baryon interactions. It was theoretically suggested that the two-nucleon induced mechanism could p
The FINUDA experiment performed a systematic study of the charged mesonic weak decay channel of $p$-shell $Lambda$-hypernuclei. Negatively charged pion spectra from mesonic decay were measured with magnetic analysis for the first time for ${^{7}_{Lam
We have obtained the decay asymmetry parameters in non-mesonic weak decay of polarized Lambda-hypernuclei by measuring the proton asymmetry. The polarized Lambda-hypernuclei, 5_Lambda-He, 12_Lambda-C, and 11_Lambda-B, were produced in high statistics
The non-mesonic weak decay of $Lambda$--hypernuclei is studied within a one-meson-exchange potential supplemented by a chirally motivated two-pion-exchange mechanism. The effects of final state interactions on the outgoing nucleons are also taken int