ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of the 0.94-day period transiting planetary system WASP-18

133   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocussing we achieve a photometric precision of 0.47 to 0.83 mmag per observation over complete transit events. The data are analysed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M_b = 10.43 +/- 0.30 +/- 0.24 Mjup R_b = 1.165 +/- 0.055 +/- 0.014 Rjup (statistical and systematic errors) respectively. The systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M_b > 3 Mjup) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.



قيم البحث

اقرأ أيضاً

We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54m telescope at ESO La Silla. In order to minimise both random and flat-fielding errors, we defocussed the telescope so its point spread function approximated an annulus of diameter 40 pixels (16 arcsec). Data reduction was undertaken using standard aperture photometry plus an algorithm for optimally combining the ensemble of comparison stars. The resulting light curves have point-to-point scatters of 0.50 mmag for the first transit and 0.59 mmag for the second. We construct detailed signal to noise calculations for defocussed photometry, and apply them to our observations. We model the light curves with the JKTEBOP code and combine the results with tabulated predictions from theoretical stellar evolutionary models to derive the physical properties of the WASP-5 system. We find that the planet has a mass of M_b = 1.637 +/- 0.075 +/- 0.033 Mjup, a radius of R_b = 1.171 +/- 0.056 +/- 0.012 Rjup, a large surface gravity of g_b = 29.6 +/- 2.8 m/s2 and a density of rho_b = 1.02 +/- 0.14 +/- 0.01 rhojup (statistical and systematic uncertainties). The planets high equilibrium temperature of T_eq = 1732 +/- 80 K makes it a good candidate for detecting secondary eclipses.
The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact point in this planetary system makes it difficult to obtain accurate measurements of its physical p arameters. Aims. By using new high-precision photometric data, we confirm that WASP-67 b shows grazing eclipses and compute accurate estimates of the physical properties of the planet and its parent star. Methods. We present high-quality, multi-colour, broad-band photometric observations comprising five light curves covering two transit events, obtained using two medium-class telescopes and the telescope-defocussing technique. One transit was observed through a Bessel-R filter and the other simultaneously through filters similar to Sloan griz. We modelled these data using jktebop. The physical parameters of the system were obtained from the analysis of these light curves and from published spectroscopic measurements. Results. All five of our light curves satisfy the criterion for being grazing eclipses. We revise the physical parameters of the whole WASP-67 system and, in particular, significantly improve the measurements of the planets radius and density as compared to the values in the discovery paper. The transit ephemeris was also substantially refined. We investigated the variation of the planets radius as a function of the wavelength, using the simultaneous multi-band data, finding that our measurements are consistent with a flat spectrum to within the experimental uncertainties.
Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present ten transit light curves from amateur telescopes, on which this discovery was based, thirteen transit light curves from professional faci lities which confirm and refine this finding, and high-resolution imaging which show no evidence for nearby companions. We use these data to determine a new and precise orbital ephemeris, and measure the physical properties of the system. Our revised orbital period is 4.5s shorter than found from the discovery data alone, which explains the early occurrence of the transits. We also find both the star and planet to be larger and less massive than previously thought. The measured mass and radius of the planet are now consistent with theoretical models of gas giants containing no heavy-element core, as expected for the sub-solar metallicity of the host star. Two transits were observed simultaneously in four passbands. We use the resulting light curves to measure the planets radius as a function of wavelength, finding that our data are sufficient in principle but not in practise to constrain its atmospheric properties. We conclude with a discussion of the current and future status of transmission photometry studies for probing the atmospheres of gas-giant transiting planets.
We present broad-band photometry of eleven planetary transits of the hot Jupiter WASP-74b, using three medium-class telescopes and employing the telescope-defocussing technique. Most of the transits were monitored through I filters and one was simult aneously observed in five optical (U, g, r, i, z) and three near infrared (J, H, K) passbands, for a total of 18 light curves. We also obtained new high-resolution spectra of the host star. We used these new data to review the orbital and physical properties of the WASP-74 planetary system. We were able to better constrain the main system characteristics, measuring smaller radius and mass for both the hot Jupiter and its host star than previously reported in the literature. Joining our optical data with those taken with the HST in the near infrared, we built up an observational transmission spectrum of the planet, which suggests the presence of strong optical absorbers, as TiO and VO gases, in its atmosphere.
We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of $M_p= 0.2755 pm 0.0089 , M_{J}$, a radius of $R_p= 1.021_{-0.065}^{+0.076}, R_{J}$ and is in an eccentric ($ e= 0.3 02 pm 0.023 $), $ 10.02165 pm 0.00055 $~d orbit around a main-sequence F9 star. The host stars brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a periastron planetary equilibrium temperature of $T_{eq}= 1225_{-39}^{+36}$ K and a low planetary mean density ($rho_p= 0.259_{-0.048}^{+0.054} , rho_{J}$) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of $beta = -44 pm 11$ deg, and we further derive an orbital obliquity of $psi = 69.6 ^{+4.7}_{-4.1}$ deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا