ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-to-leading order QCD corrections to pp --> b b_bar b b_bar + X at the LHC: the quark induced case

38   0   0.0 ( 0 )
 نشر من قبل Thomas Binoth Dr.
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of two b-quark pairs is a prominent background for Higgs and New Physics searches in various extensions of the Standard Model. We present here the next-to-leading order QCD corrections to the quark induced subprocess using the GOLEM approach for the virtual corrections. We show that our result considerably improves the prediction and conclude that the inclusion of next-to-leading order effects is indispensable for reliable studies of four b-quark observables in hadronic collisions.

قيم البحث

اقرأ أيضاً

D0 and CDF collaborations at the Fermilab Tevatron have searched for non-standard-model single top-quark production and set upper limits on the anomalous top quark flavor-changing neutral current (FCNC) couplings $kappa^g_{tc}/Lambda$ and $kappa^g_{t u}/Lambda$ using the measurement of total cross section calculated at the next-to-leading order (NLO) in QCD. In this Letter, we report on the effect of anomalous FCNC couplings to various decay branching ratios of the top quark, calculated at the NLO. This result is not only mandatory for a consistent treatment of both the top quark production and decay via FCNC couplings by D0 and CDF at the Tevatron but is also important for the study of ATLAS and CMS sensitivity to these anomalous couplings at the CERN LHC. We find that the NLO corrections to the partial decay widths of the three decay channels $ tto q + g$, $ tto q + gamma$ and $ tto q + Z$ are at the order of 10% in magnitude and modify their branching ratios by about 20%, 0.4% and 2%, respectively, as compared to their leading order predictions.
We report a calculation of the perturbative matching coefficients for the transverse-momentum-dependent parton distribution functions for quark at the next-to-next-to-next-to-leading order in QCD, which involves calculation of non-standard Feynman in tegrals with rapidity divergence. We introduce a set of generalized Integration-By-Parts equations, which allows an algorithmic evaluation of such integrals using the machinery of modern Feynman integral calculation.
We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into $mu^+mu^-mathrm{e}^+mathrm{e}^-$ or $mu^+mu^-mu^+mu^-$ final states. We use complete l eading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of $sim-5%$ and reach several $-10%$ in the high-energy tails of distributions. Comparing the results for $mu^+mu^-mathrm{e}^+mathrm{e}^-$ and $mu^+mu^-mu^+mu^-$ final states, we find significant differences mainly in distributions that are sensitive to the $mu^+mu^-$ pairing in the $mu^+mu^-mu^+mu^-$ final state. Differences between $mu^+mu^-mathrm{e}^+mathrm{e}^-$ and $mu^+mu^-mu^+mu^-$ channels due to interferences of equal-flavour leptons in the final state can reach up to $10%$ in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.
We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on the leptonic decays of the weak gauge boson, and take photonic and non-resonant contributions to the matrix elements fully into account. We provide results for observables of particular importance for the suppression of QCD backgrounds to vector-boson fusion processes by means of central-jet-veto techniques. While parton-shower effects are small for most observables associated with the two hardest jets, they can be more pronounced for distributions that are employed in central-jet-veto studies.
The reaction pp/pbar p -> t tbar jet+X is an important background process for Higgs boson searches in the mass range below 200 GeV. Apart from that it is also an ideal laboratory for precision measurements in the top quark sector. Both applications r equire a solid theoretical prediction, which can be achieved only through a full next-to-leading order (NLO) calculation. In this work we describe the NLO computation of the subprocess gg -> t tbar g.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا