ﻻ يوجد ملخص باللغة العربية
The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.
We present molecular gas mass estimates for a sample of 13 local galaxies whose kinematic and star forming properties closely resemble those observed in $zapprox 1.5$ main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line a
We use numerical simulations of isolated galaxies to study the effects of stellar feedback on the formation and evolution of giant star-forming gas clumps in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound
Disk galaxies at high redshift (z~2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger
The outskirts of galaxies - especially the very extended HI disks of galaxies - are strongly affected by their local environment. I highlight the giant 2X-HI disks of nearby galaxies (M 83, NGC 3621, and NGC 1512), studied as part of the Local Volume
Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral