ﻻ يوجد ملخص باللغة العربية
Ferromagnetic proximity effect is studied in InAs nanowire (NW) based quantum dots (QD) strongly coupled to a ferromagnetic (F) and a superconducting (S) lead. The influence of the F lead is detected through the splitting of the spin-1/2 Kondo resonance. We show that the F lead induces a local exchange field on the QD, which has varying amplitude and a sign depending on the charge states. The interplay of the F and S correlations generates an exchange field related supgap feature. This novel mini-gap allows now the visualization of the exchange field also in even charge states
Conventional spin-singlet superconductivity that deeply penetrates into ferromagnets is typically killed by the exchange interaction, which destroys the spin-singlet pairs. Under certain circumstances, however, superconductivity survives this interac
We study the anomalous Josephson effect, as well as the dependence on the direction of the critical Josephson current, in an S/N/S junction, where the normal part is realized by alternating spin-orbit coupled and ferromagnetic layers. We show that to
Two-dimensional (2D) van der Waals heterostructures serve as a promising platform to exploit various physical phenomena in a diverse range of novel spintronic device applications. The efficient spin injection is the prerequisite for these devices. Th
We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a ver
Andreev bound states are an expression of quantum coherence between particles and holes in hybrid structures composed of superconducting and non-superconducting metallic parts. Their spectrum carries important information on the nature of the pairing