ﻻ يوجد ملخص باللغة العربية
We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmic parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and $ato 0$ limits. We find accurate coincidence with the one-loop result for the ghost self-energy known from standard Lattice Perturbation Theory and improve our previous estimate for the two-loop constant contribution to the ghost self-energy in Landau gauge. Our results for the perturbative ghost propagator are compared with Monte Carlo measurements of the ghost propagator performed by the Berlin Humboldt university group which has used the exponential relation between potentials and gauge links.
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume
This is the first of a series of two papers on the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to eventually compare with results from lattice simulations in order to enlight the genuine
We present higher loop results for the gluon and ghost propagator in Landau gauge on the lattice calculated in numerical stochastic perturbation theory. We make predictions for the perturbative content of those propagators as function of the lattice
This is the second of two papers devoted to the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Such a computation should enable a comparison with results from lattice simulations in order to reveal the genu
We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-