ترغب بنشر مسار تعليمي؟ اضغط هنا

ASTE CO(3-2) Mapping toward the Whole Optical Disk of M 83: Properties of Inter-arm GMAs

313   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Muraoka
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new on-the-fly (OTF) mapping of CO(J=3-2) line emission with the Atacama Submillimeter Telescope Experiment (ASTE) toward the 8 x 8 (or 10.5 x 10.5 kpc at the distance of 4.5 Mpc) region of the nearby barred spiral galaxy M 83 at an effective resolution of 25. Due to its very high sensitivity, our CO(J=3-2) map can depict not only spiral arm structures but also spur-like substructures extended in inter-arm regions. This spur-like substructures in CO(J=3-2) emission are well coincident with the distribution of massive star forming regions traced by Halpha luminosity and Spitzer/IRAC 8 um emission. We have identified 54 CO(J=3-2) clumps as Giant Molecular-cloud Associations (GMAs) employing the CLUMPFIND algorithm, and have obtained their sizes, velocity dispersions, virial masses, and CO luminosity masses. We found that the virial parameter alpha, which is defined as the ratio of the virial mass to the CO luminosity mass, is almost unity for GMAs in spiral arms, whereas there exist some GMAs whose alpha are 3 -- 10 in the inter-arm region. We found that GMAs with higher $alpha$ tend not to be associated with massive star forming regions, while other virialized GMAs are. Since alpha mainly depends on velocity dispersion of the GMA, we suppose the onset of star formation in these unvirialized GMAs with higher alpha are suppressed by an increase in internal velocity dispersions of Giant Molecular Clouds within these GMAs due to shear motion.

قيم البحث

اقرأ أيضاً

We report $^{12}$CO($J=$3--2) observations of 15 nearby elliptical galaxies carried out with the ASTE telescope. Thirteen were selected without regard to the presence of other tracers of cold interstellar matter. CO emission was detected from three o f the galaxies, two of which are undetected by IRAS at 100 microns, suggesting that cold ISM may be present in more ellipticals than previously thought. The molecular gas masses range from $2.2 times 10^6$ to $4.3 times 10^8$ $M_odot$. The ratio of the CO(3--2) and (1--0) lines, $R_{31}$, has a lower value for elliptical galaxies than for spiral galaxies except for NGC 855, for which the value is close to the mean for spirals. The molecular gas in NGC 855 has a mean density in the range 300 -- 1000 cm$^{-3}$ adopting a temperature range of 15 -- 100 K.
We present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC 1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1 -0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 {mu}m dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
Context. Outflows provide indirect means to get an insight on diverse star formation associated phenomena. On scales of individual protostellar cores, outflows combined with intrinsic core properties can be used to study the mass accretion/ejection p rocess of heavily embedded protostellar sources. Methods. An area comprising 460x230 of the Serpens cloud core has been mapped in 12 CO J = 3to 2 with the HARP-B heterodyne array at the James Clerk Maxwell Telescope; J = 3to 2 observations are more sensitive tracers of hot outflow gas than lower J CO transitions; combined with the high sensitivity of the HARP-B receptors outflows are sharply outlined, enabling their association with individual protostellar cores. Results. Most of ~20 observed outflows are found to be associated with known protostellar sources in bipolar or unipolar configurations. All but two outflow/core pairs in our sample tend to have a projected orientation spanning roughly NW-SE. The overall momentum driven by outflows in Serpens lies between 3.2 and 5.1 x 10^(-1) Modot km s^(-1), the kinetic energy from 4.3 to 6.7 x 10^(43) erg and momentum flux is between 2.8 and 4.4 x 10^(-4) Modot km s^(-1) yr^(-1). Bolometric luminosities of protostellar cores based on Spitzer photometry are found up to an order of magnitude lower than previous estimations derived with IRAS/ISO data. Conclusions. We confirm the validity of the existing correlations between the momentum flux and bolometric luminosity of Class I sources for the homogenous sample of Serpens, though we suggest that they should be revised by a shift to lower luminosities. All protostars classified as Class 0 sources stand well above the known Class I correlations, indicating a decline in momentum flux between the two classes.
We have conducted a spectral line survey in the 3 mm and 2 mm bands toward two positions in a spiral arm of M51 (NGC 5194) with the IRAM 30 m telescope. In this survey, we have identified 13 molecular species, including CN, CCH, N2H+, HNCO, and CH3OH . Furthermore, 6 isotopologues of the major species have been detected. On the other hand, SiO, HC3N, CH3CN, and the deuterated species such as DCN and DCO+ are not detected. The deuterium fractionation ratios are evaluated to be less than 0.8 % and 1.2 % for DCN/HCN and DCO+/HCO+, respectively. By comparing the results of the two positions with different star formation activities, we have found that the observed chemical compositions do not strongly depend on star formation activities. They seem to reflect a chemical composition averaged over the 1-kpc scale region including many giant molecular clouds. Among the detected molecules CN, CCH, and CH3OH are found to be abundant. High abundances of CN, and CCH are consistent with the above picture of a wide spread distribution of molecules, because they can be produced by photodissociation. On the other hand, it seems likely that CH3OH is liberated into the gas phase by shocks associated with large scale phenomena such as cloud-cloud collisions and/or by non-thermal desorption processes such as photoevaporation due to cosmic-ray induced UV photons. The present result demonstrates a characteristic chemical composition of a giant molecular cloud complex in the spiral arm, which can be used as a standard reference for studying chemistry in AGNs and starbursts.
We present the new single dish CO (3-2) emission data obtained toward 19 early stage and 7 late stage nearby merging galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). Combining with the single dish and interferometric data of gala xies observed in previous studies, we investigate the relation between the CO (3-2) luminosity (LCO(3-2)) and the far Infrared luminosity (LFIR) in a sample of 29 early stage and 31 late stage merging galaxies, and 28 nearby isolated spiral galaxies. We find that normal isolated spiral galaxies and merging galaxies have different slopes (alpha) in the log LCO(3-2) - log LFIR plane (alpha ~ 0.79 for spirals and ~ 1.12 for mergers). The large slope (alpha > 1) for merging galaxies can be interpreted as an evidence for increasing Star Formation Efficiency (SFE=LFIR/LCO(3-2)) as a function of LFIR. Comparing our results with sub-kpc scale local star formation and global star-burst activity in the high-z Universe, we find deviations from the linear relationship in the log LCO(3-2) - log LFIR plane for the late stage mergers and high-z star forming galaxies. Finally, we find that the average SFE gradually increases from isolated galaxies, merging galaxies, and to high-z submillimeter galaxies / quasi-stellar objects (SMGs/QSOs). By comparing our findings with the results from numerical simulations, we suggest; (1) inefficient star-bursts triggered by disk-wide dense clumps occur in the early stage of interaction and (2) efficient star-bursts triggered by central concentration of gas occur in the final stage. A systematic high spatial resolution survey of diffuse and dense gas tracers is a key to confirm this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا