ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear orthogonality preservers of Hilbert $C^*$-modules over $C^*$-algebras with real rank zero

523   0   0.0 ( 0 )
 نشر من قبل Chi-Keung Ng
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a $C^*$-algebra. Let $E$ and $F$ be Hilbert $A$-modules with $E$ being full. Suppose that $theta : Eto F$ is a linear map preserving orthogonality, i.e., $<theta(x), theta(y) > = 0$ whenever $<x, y > = 0$. We show in this article that if, in addition, $A$ has real rank zero, and $theta$ is an $A$-module map (not assumed to be bounded), then there exists a central positive multiplier $uin M(A)$ such that $<theta(x), theta(y) > = u < x, y>$ ($x,yin E$). In the case when $A$ is a standard $C^*$-algebra, or when $A$ is a $W^*$-algebra containing no finite type II direct summand, we also obtain the same conclusion with the assumption of $theta$ being an $A$-module map weakened to being a local map.



قيم البحث

اقرأ أيضاً

We investigate the orthogonality preserving property for pairs of mappings on inner product $C^*$-modules extending existing results for a single orthogonality-preserving mapping. Guided by the point of view that the $C^*$-valued inner product struct ure of a Hilbert $C^*$-module is determined essentially by the module structure and by the orthogonality structure, pairs of linear and local orthogonality-preserving mappings are investigated, not a priori bounded. The intuition is that most often $C^*$-linearity and boundedness can be derived from the settings under consideration. In particular, we obtain that if $mathscr{A}$ is a $C^{*}$-algebra and $T, S:mathscr{E}longrightarrow mathscr{F}$ are two bounded ${mathscr A}$-linear mappings between full Hilbert $mathscr{A}$-modules, then $langle x, yrangle = 0$ implies $langle T(x), S(y)rangle = 0$ for all $x, yin mathscr{E}$ if and only if there exists an element $gamma$ of the center $Z(M({mathscr A}))$ of the multiplier algebra $M({mathscr A})$ of ${mathscr A}$ such that $langle T(x), S(y)rangle = gamma langle x, yrangle$ for all $x, yin mathscr{E}$. In particular, for adjointable operators $S$ we have $T=(S^*)^{-1}$, and any bounded invertible module operator $T$ may appear. Varying the conditions on the mappings $T$ and $S$ we obtain further affirmative results for local operators and for pairs of a bounded and of an unbounded module operator with bounded inverse, among others. Also, unbounded operators with disjoint ranges are considered. The proving techniques give new insights.
We present a general approach to a modular frame theory in C*-algebras and Hilbert C*-modules. The investigations rely on the idea of geometric dilation to standard Hilbert C*-modules over unital C*-algebras that possess orthonormal Hilbert bases, an d of reconstruction of the frames by projections and by other bounded modular operators with suitable ranges. We obtain frame representations and decomposition theorems, as well as similarity and equivalence results for frames. Hilbert space frames and quasi-bases for conditional expectations of finite index on C*-algebras appear as special cases. Using a canonical categorical equivalence of Hilbert C*-modules over commutative C*-algebras and (F)Hilbert bundles the results find a reintepretation for frames in vector and (F)Hilbert bundles. Fields of applications are investigations on Cuntz-Krieger-Pimsner algebras, on conditional expectations of finite index, on various ranks of C*-algebras, on classical frame theory of Hilbert spaces (wavelet and Gabor frames), and others. 2001: In the introduction we refer to related publications in detail.
The goal of the present paper is a short introduction to a general module frame theory in C*-algebras and Hilbert C*-modules. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modules over unital C*-algebras th at possess orthonormal bases, and of reconstruction of the frames by projections and other bounded module operators with suitable ranges. We obtain frame representation and decomposition theorems, as well as similarity and equivalence results. The relative position of two and more frames in terms of being complementary or disjoint is investigated in detail. In the last section some recent results by P. G. Casazza are generalized to our setting. The Hilbert space situation appears as a special case. For detailled proofs we refer to another paper also contained in the ArXiv.
264 - Huaxin Lin 2009
Let $epsilon>0$ be a positive number. Is there a number $delta>0$ satisfying the following? Given any pair of unitaries $u$ and $v$ in a unital simple $C^*$-algebra $A$ with $[v]=0$ in $K_1(A)$ for which $$ |uv-vu|<dt, $$ there is a continuous path o f unitaries ${v(t): tin [0,1]}subset A$ such that $$ v(0)=v, v(1)=1 and |uv(t)-v(t)u|<epsilon forall tin [0,1]. $$ An answer is given to this question when $A$ is assumed to be a unital simple $C^*$-algebra with tracial rank no more than one. Let $C$ be a unital separable amenable simple $C^*$-algebra with tracial rank no more than one which also satisfies the UCT. Suppose that $phi: Cto A$ is a unital monomorphism and suppose that $vin A$ is a unitary with $[v]=0$ in $K_1(A)$ such that $v$ almost commutes with $phi.$ It is shown that there is a continuous path of unitaries ${v(t): tin [0,1]}$ in $A$ with $v(0)=v$ and $v(1)=1$ such that the entire path $v(t)$ almost commutes with $phi,$ provided that an induced Bott map vanishes. Oth
The parallel sum for adjoinable operators on Hilbert $C^*$-modules is introduced and studied. Some results known for matrices and bounded linear operators on Hilbert spaces are generalized to the case of adjointable operators on Hilbert $C^*$-modules . It is shown that there exist a Hilbert $C^*$-module $H$ and two positive operators $A, Binmathcal{L}(H)$ such that the operator equation $A^{1/2}=(A+B)^{1/2}X, Xin cal{L}(H)$ has no solution, where $mathcal{L}(H)$ denotes the set of all adjointable operators on $H$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا