ﻻ يوجد ملخص باللغة العربية
We study the Schrodinger equation on a flat euclidean cone $mathbb{R}_+ times mathbb{S}^1_rho$ of cross-sectional radius $rho > 0$, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. These asymptotic expansions remain uniform while approaching the intersection of the geometric front, the part of the solution coming from formal application of the method of images, and the diffractive front emerging from the cone tip. As an application, we prove Strichartz estimates for the Schrodinger propagator on this class of cones.
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius $rho > 0$, the manifold $mathbb{R}_+ times mathbb{R} / 2 pi rho mathbb{Z}$ equipped with the metric $g(r,theta) = dr^2 + r^2 dtheta^2$. Using
We prove Strichartz estimates with a loss of derivatives for the Schrodinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from tho
We prove generalized Strichartz estimates with weaker angular integrability for the Schrodinger equation. Our estimates are sharp except some endpoints. Then we apply these new estimates to prove the scattering for the 3D Zakharov system with small d
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the
We prove global weighted Strichartz estimates for radial solutions of linear Schrodinger equation on a class of rotationally symmetric noncompact manifolds, generalizing the known results on hyperbolic and Damek-Ricci spaces. This yields classical St