ترغب بنشر مسار تعليمي؟ اضغط هنا

Plans for PANDA Online Computing

60   0   0.0 ( 0 )
 نشر من قبل S\\\"oren Lange
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jens Soeren Lange




اسأل ChatGPT حول البحث

The PANDA experiment will not use any hardware trigger, i.e. all raw data are streaming in the data acquisition with a bandwidth of ~280 GB/s. The PANDA Online System is designed to perform data reduction by a factor of ~800 by reconstruction algorithms programmed in VHDL (Very High Speed Integrated Circuit Hardware Description Language) on FPGAs (Field Programmable Gate Arrays).

قيم البحث

اقرأ أيضاً

104 - W. Esmail , T. Stockmanns , 2019
We apply deep learning methods as a track finding algorithm to the PANDA Forward Tracking Stations (FTS). The problem is divided into three steps: The first step relies on an Artificial Neural Network (ANN) that is trained as a binary classifier to b uild track segments in three different parts of the FTS, namely FT1,FT2, FT3,FT4, and FT5,FT6. The ANN accepts hit pairs as an input and outputs a probability that they are on the same track or not. The second step builds 3D track segments from the 2D ones and is based on the geometry of the detector. The last step is to match the track segments from the different parts of the FTS to form a full track candidate, and is based on a Recurrent Neural Network (RNN). The RNN is used also as a binary classifier that outputs the probability that the combined track segments are a true track or not. The performance of the algorithm is judged based on the purity, efficiency and the ghost ratio of the reconstructed tracks. The purity specifies which fraction of hits in one track come from the correct particle. The correct particle is the particle, which produces the majority of hits in the track. The efficiency is defined as the ratio of the number of correctly reconstructed tracks to all generated tracks.
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being develope d for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface.
117 - M. Ball 2012
This document illustrates the technical layout and the expected performance of a Time Projection Chamber as the central tracking system of the PANDA experiment. The detector is based on a continuously operating TPC with Gas Electron Multiplier (GEM) amplification.
This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is follo wed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy-loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magn ets and, hence, is subject to possible modifications arising during this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا