ﻻ يوجد ملخص باللغة العربية
Globular clusters have long been considered the closest approximation to a physicists laboratory in astrophysics, and as such a near-ideal laboratory for (low-mass) stellar evolution. However, recent observations have cast a shadow on this long-standing paradigm, suggesting the presence of multiple populations with widely different abundance patterns, and -- crucially -- with widely different helium abundances as well. In this review we discuss which features of the Hertzsprung-Russel diagram may be used as helium abundance indicators, and present an overview of available constraints on the helium abundance in globular clusters.
Open and globular star clusters have served as benchmarks for the study of stellar evolution due to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that establis
Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from $sim 20
We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). We look for similarities and differences with
Recent discoveries of black hole (BH) candidates in Galactic and extragalactic globular clusters (GCs) have ignited interest in understanding how BHs dynamically evolve in a GC and the number of BHs ($N_{rm{BH}}$) that may still be retained by todays
We present the results of our analysis of the photometric data of globular clusters in the elliptical galaxy NGC 5128 (Cen A). We show that the integrated colour U-B can be an effective metallicity indicator for simple stellar populations. This is be