ترغب بنشر مسار تعليمي؟ اضغط هنا

An Infrared Comparison of Type-1 and Type-2 Quasars

118   0   0.0 ( 0 )
 نشر من قبل Kyle Hiner
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kyle D. Hiner




اسأل ChatGPT حول البحث

We model the optical to far-infrared SEDs of a sample of six type-1 and six type-2 quasars selected in the mid-infrared. The objects in our sample are matched in mid-IR luminosity and selected based on their Spitzer IRAC colors. We obtained new targeted Spitzer IRS and MIPS observations and used archival photometry to examine the optical to far-IR SEDs. We investigate whether the observed differences between samples are consistent with orientation-based unification schemes. The type-1 objects show significant emission at 3 micron. They do not show strong PAH emission and have less far-IR emission on average when compared to the type-2 objects. The SEDs of the type-2 objects show a wide assortment of silicate features, ranging from weak emission to deep silicate absorption. Some also show strong PAH features. In comparison, silicate is only seen in emission in the type-1 objects. This is consistent with some of the type-2s being reddened by a foreground screen of cooler dust, perhaps in the host galaxy itself. We investigate the AGN contribution to the far-IR emission and find it to be significant. We also estimate the star formation rate for each of the objects by integrating the modeled far-IR flux and compare this with the SFR found from PAH emission. We find the type-2 quasars have a higher average SFR than the type-1 quasars based on both methods, though this could be due to differences in bolometric luminosities of the objects. While we find pronounced differences between the two types of objects, none of them are inconsistent with orientation-based unification schemes.

قيم البحث

اقرأ أيضاً

We use the Spitzer Space Telescope Enhanced Imaging Products (SEIP) and the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES) to study the spectral energy distributions of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the 2-Micron All Sky Survey (2MASS) we are able to construct a statistically robust rest-frame 0.1-100 micron type 1 quasar template. We find the quasar population is well-described by a single power-law SED at wavelengths less than 20 microns, in good agreement with previous work. However, at longer wavelengths we find a significant excess in infrared luminosity above an extrapolated power-law, along with signifiant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 microns.
We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful q uasars are obscured by dust, and are difficult to detect in optical photometric or spectroscopic surveys. However these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 type 2 matched in redshift and [OIII] luminosity, we produce composite rest-frame 0.2-15 micron SEDs based on SDSS, UKIDSS, and Wide-Field Infrared Survey Explorer (WISE) photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the AGN relative to the host galaxy increases with AGN luminosity (L_[OIII]) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously (W1-W2 > 0.7 [Vega]), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u-W3 [AB]) > 1.4(W1-W2 [Vega])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of mid-IR and optical photometry.
We present the results of a comparison between the environments of 1) a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), 2) a complete sample of 20 radio-quiet type-2 quasars (0.3 < z < 0.41), and 3) a con trol sample of 107 quiescent early-type galaxies at 0.2 < z < 0.7 in the Extended Groth Strip (EGS). The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, PRGs are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3 sigma level. This result supports a physical origin of radio loudness, with high density gas environments favouring the transformation of AGN power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focussing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3 sigma result. 82% of the 2Jy WLRGs are in clusters, according to our definition (Bgq > 400) versus only 31% of the SLRGs.
In a popular scenario for the coevolution of massive black holes and galaxies, major mergers of gas-rich galaxies fuel vigorous star formation and obscured (type 2) quasar activity until energy feedback from the active galactic nucleus clears away th e gas and dust to reveal an unobscured (type 1) quasar. Under this scenario, the precursor type 2 quasars should be more gas-rich than their type 1 counterparts, and both types of quasars are expected to be gas-deficient relative to normal, star-forming galaxies of similar stellar mass. We test this evolutionary hypothesis by investigating the infrared (~ 1-500 micron) spectral energy distribution of 86 optically selected z < 0.5 type 2 quasars, matched in redshift and [O III] luminosity to a comparison sample of type 1 quasars. Contrary to expectations, the gas content of the host galaxies of type 2 quasars is nearly indistinguishable from that of type 1 quasar hosts, and neither type exhibits the predicted deficit in gas relative to normal galaxies. The gas mass fraction of quasar hosts appears unaffected by the bolometric luminosity of the active nucleus, although their interstellar radiation field is preferentially higher than that of normal galaxies, potentially implicating active galactic nucleus heating of the large-scale galactic dust.
Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei (AGNs). A straightforward expectation of unified models is that highly obscured Type 2 AGNs should show little or no optical variability on timescales of days to years. As a test of this prediction, we have carried out a search for variability in Type 2 quasars in SDSS Stripe 82 using difference-imaging photometry. Starting with the Type 2 AGN catalogs of Zakamska et al. (2003) and Reyes et al. (2008), we find evidence of significant g-band variability in 17 out of 173 objects for which light curves could be measured from the Stripe 82 data. To determine the nature of this variability, we obtained new Keck spectropolarimetry observations for seven of these variable AGNs. The Keck data show that these objects have low continuum polarizations (p<~1% in most cases) and all seven have broad H-alpha and/or MgII emission lines in their total (unpolarized) spectra, indicating that they should actually be classified as Type 1 AGNs. We conclude that the primary reason variability is found in the SDSS-selected Type 2 AGN samples is that these samples contain a small fraction of Type 1 AGNs as contaminants, and it is not necessary to invoke more exotic possible explanations such as a population of naked or unobscured Type 2 quasars. Aside from misclassified Type 1 objects, the Type 2 quasars do not generally show detectable optical variability over the duration of the Stripe 82 survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا