ترغب بنشر مسار تعليمي؟ اضغط هنا

The Activity of the Neighbours of AGN and Starburst Galaxies: Towards an evolutionary sequence of AGN activity

162   0   0.0 ( 0 )
 نشر من قبل Elias Koulouridis Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a follow-up study of a series of papers concerning the role of close interactions as a possible triggering mechanism of the activity of AGN and starburst (SB) galaxies. We have already studied the close (<100 kpc) and the large scale (<1 Mpc) environment of Sy1, Sy2 and Bright IRAS galaxies and their respective control samples (Koulouridis et al.). The results led us to the conclusion that a close encounter appears capable of activating a sequence where a normal galaxy becomes first a starburst, then a Sy2 and finally a Sy1 galaxy. However since both galaxies of an interacting pair should be affected, we present here optical spectroscopy and X-ray imaging of the neighbouring galaxies around our Seyfert and BIRG galaxy samples. We find that more than 70% of all neighbouring galaxies exhibit thermal or/and nuclear activity (namely enhanced star formation, starbursting and/or AGN) and furthermore we discovered various trends regarding the type and strength of the neighbours activity with respect to the activity of the central galaxy, the most important of which is that the neighbours of Sy2 are systematically more ionized, and their straburst is younger, than the neighbours of Sy1s. Our results not only strengthen the link between close galaxy interactions and activity but also provide more clues regarding the evolutionary sequence inferred by previous results.

قيم البحث

اقرأ أيضاً

We present a follow-up study on a series of papers concerning the role of close interactions as a possible triggering mechanism of AGN activity. We have already studied the close (<100kpc/h) and the large scale (<1 Mpc/h) environment of a local sampl e of Sy1, Sy2 and bright IRAS galaxies (BIRG) and their respective control samples. The results led us to the conclusion that a close encounter appears capable of activating a sequence where an absorption line galaxy (ALG) galaxy becomes first a starburst, then a Sy2 and finally a Sy1. Here we investigate the activity of neighboring galaxies of different types of AGN, since both galaxies of an interacting pair should be affected. To this end we present the optical spectroscopy and X-ray imaging of 30 neighbouring galaxies around two local (z<0.034) samples of 10 Sy1 and 13 Sy2 galaxies. Based on the optical spectroscopy we find that more than 70% of all neighbouring galaxies exhibit star forming and/or nuclear activity (namely recent star formation and/or AGN), while an additional X-ray analysis showed that this percentage might be significantly higher. Furthermore, we find a statistically significant correlation, at a 99.9% level, between the value of the neighbours [OIII]/Hbeta ratio and the activity type of the central active galaxy, i.e. the neighbours of Sy2 galaxies are systematically more ionized than the neighbours of Sy1s. This result, in combination with trends found using the Equivalent Width of the Halpha emission line and the stellar population synthesis code STARLIGHT, indicate differences in the stellar mass, metallicity and star formation history between the samples. Our results point towards a link between close galaxy interactions and activity and also provide more clues regarding the possible evolutionary sequence inferred by our previous studies.
Large scale X-ray jets that extend to >100 kpc distances from the host galaxy indicate the importance of jets interactions with the environment on many different physical scales. Morphology of X-ray clusters indicate that the radio-jet activity of a cD galaxy is intermittent. This intermittency might be a result of a feedback and/or interactions between galaxies within the cluster. Here we consider the radiation pressure instability operating on short timescales (<10^5 years) as the origin of the intermittent behaviour. We test whether this instability can be responsible for short ages (< 10^4 years) of Compact Symmetric Objects measured by hot spots propagation velocities in VLBI observations. We model the accretion disk evolution and constrain model parameters that may explain the observed compact radio structures and over-abundance of GPS sources. We also describe effects of consequent outbursts.
66 - S. Giacintucci 2003
In this paper we present Very Large Array (VLA) 1.4 GHz (21 cm) observations of the region between the centres of A3558 and A3562, in the majorcluster merger complex of the Shapley Concentration. Our final catalogue includes a total of 174 radio sour ces above the flux density limit of 0.25 mJy b$^{-1}$. By cross-correlation with optical and spectroscopic catalogues we found 33 optical counterparts belonging to the Shapley Concentration. We investigated the effects of cluster merger on the radio emission properties of the galaxy population by means of the radio source counts and the radio luminosity functions (RLF). We found that the radio source counts are consistent with the field source counts.The RLF of elliptical and S0 galaxies in the region surveyed here, is consistent with the ``universal RLF for early--type galaxies.This result suggests that the deficit in radio galaxies found in ourprevious works over the whole A3558 chain, is entirely due to the cluster A3558. A population of faint radio galaxies (logP$_{1.4 GHz}$(W Hz$^{-1}$) ltsim 22) is also found.Half of these objects are also blue, suggesting that starburst is the main mechanism driving the radio emission. Finally, we detected 14 spiral radio galaxies, whose ratio between radio and optical emission is similar to those found in galaxies located in rich and dynamically evolved clusters. Our results are briefly discussed in the light of the age and stage of the merger in the A3558 cluster complex.
We present MERLIN observations of OH maser and radio continuum emission from the Ultra Luminous IR Galaxy Markarian 231. The 1665- and 1667-MHz transitions have a combined velocity extent of 720 km/s and show a similar position-velocity structure inc luding a gradient of 1.7 km/s/pc from NW to SE along the 420-pc major axis, steeper in the inner few tens of pc. The maser distribution is modelled as a torus rotating about an axis inclined at ~45deg. We estimate the enclosed mass density to be 320(90) Msun in a flattened distribution, including a central unresolved mass of </=8E+06 Msun. All the maser emission is projected against a region with a radio continuum brightness temperature >/=1E+05 K, giving a maser gain of </=2.2. The 1667:1665-MHz line ratio is close to the LTE ratio of 1.8 consistent with radiatively pumped, unsaturated masers. The size of individual masing regions is in the range 0.25-4 pc with a covering factor close to unity. There are no very bright compact masers, in contrast to galaxies such as the Seyfert 2 Markarian 273 where the masing torus is viewed nearer edge-on. The comparatively modest maser amplification seen from Markarian 231 is consistent with its classification as a Seyfert 1. Most of the radio continuum emission on 50-500 pc scales is probably of starburst origin but the compact peak is 0.4 per cent polarized by a magnetic field running north-south, similar to the jet direction on these scales. There is no close correlation between maser and continuum intensity. Comparisons with other data show that the jet changes direction close the nucleus and suggest that the sub-kpc disc hosting the masers and starburst activity is severely warped.
83 - R. Coziol 2011
We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. Th e fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torre-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate--the efficiency with which the gas is transformed into stars--the AGN phenomenon, and the gravitational binding energy of the galaxies: the higher the binding energy, the higher the astration rate and the higher the probability to find an AGN. The NLAGNs in our sample are consistent with scaled-down or powered-dow
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا