ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated search for star clusters in large multiband surveys: II. Discovery and investigation of open clusters in the Galactic plane

223   0   0.0 ( 0 )
 نشر من قبل Ivan Zolotukhin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Automated search for star clusters in J,H,K_s data from 2MASS catalog has been performed using the method developed by Koposov et. al (2008). We have found and verified 153 new clusters in the interval of the galactic latitude -24 < b < 24 degrees. Color excesses E(B-V), distance moduli and ages were determined for 130 new and 14 yet-unstudied known clusters. In this paper, we publish a catalog of coordinates, diameters, and main parameters of all the clusters under study. A special web-site available at http://ocl.sai.msu.ru has been developed to facilitate dissemination and scientific usage of the results.

قيم البحث

اقرأ أيضاً

We utilize the data from the Apache Point Observatory Galactic Evolution Experiment-2 (APOGEE-2) in the fourteenth data release of the Sloan Digital Sky Survey (SDSS) to calculate the line-of-sight velocity dispersion $sigma_{1D}$ of a sample of old open clusters (age larger than 100,Myr) selected from the Milky Way open cluster catalog of Kharchenko et al. (2013). Together with their $K_s$ band luminosity $L_{K_s}$, and the half-light radius $r_{h}$ of the most probable members, we find that these three parameters show significant pairwise correlations among each other. Moreover, a fundamental plane-{it like} relation among these parameters is found for the oldest open clusters (age older than 1,Gyr), $L_{K_s}proptosigma_{1D}^{0.82pm0.29}cdot r_h^{2.19pm0.52}$ with $rms sim, 0.31$,mag in the $K_s$ band absolute magnitude. The existence of this relation, which deviates significantly from the virial theorem prediction, implies that the dynamical structures of the old open clusters are quite similar, when survived from complex dynamical evolution to age older than 1 Gyr.
It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC-2. 5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume- and magnitude-limited samples of clusters, re-determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present-day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk.
The YMCA (Yes, Magellanic Clouds Again) and STEP ({The SMC in Time: Evolution of a Prototype interacting late-type dwarf galaxy) projects are deep g,i photometric surveys carried out with the VLT Survey Telescope (VST) and devoted to study the outski rts of the Magellanic System. A main goal of YMCA and STEP is to identify candidate stellar clusters and complete their census out to the outermost regions of the Magellanic Clouds. We adopted a specific over-density search technique coupled with a visual inspection of the color magnitude diagrams (CMDs) to select the best candidates and estimate their ages. To date, we analysed a region of 23 sq. deg. in the outskirts of the Large Magellanic Cloud, detecting 85 candidate cluster candidates, 16 of which have estimated ages falling in the so called age gap. We use these objects together with literature data to gain insight into the formation and interaction history of the Magellanic Clouds.
Context: The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open cl usters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.
An earlier analysis of the Milky Way Star Cluster (MWSC) catalogue revealed an apparent lack of old (> 1 Gyr) open clusters in the solar neighbourhood (< 1 kpc). To fill this gap we undertook a search for hitherto unknown star clusters, assuming that the missing old clusters reside at high Galactic latitudes |b|> 20{deg}. We were looking for stellar density enhancements using a star count algorithm on the 2MASS point source catalogue. To increase the contrast between potential clusters and the field, we applied filters in colour-magnitude space according to typical colour-magnitude diagrams of nearby old open clusters. The subsequent comparison with lists of known objects allowed us to select thus far unknown cluster candidates. For verification they were processed with the standard pipeline used within the MWSC survey for computing cluster membership probabilities and for determining structural, kinematic, and astrophysical parameters. In total we discovered 782 density enhancements, 522 of which were classified as real objects. Among them 139 are new open clusters with ages 8.3 < log (t [yr]) < 9.7, distances d < 3 kpc, and distances from the Galactic plane 0.3 < Z < 1 kpc. This new sample has increased the total number of known high latitude open clusters by about 150%. Nevertheless, we still observe a lack of older nearby clusters up to 1 kpc from the Sun. This volume is expected to still contain about 60 unknown clusters that probably escaped our detection algorithm, which fails to detect sparse overdensities with large angular size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا