ترغب بنشر مسار تعليمي؟ اضغط هنا

No Evidence of Quasar-Mode Feedback in a Four-Way Group Merger at z~0.84

79   0   0.0 ( 0 )
 نشر من قبل Dale D. Kocevski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a Chandra search for evidence of triggered nuclear activity within the Cl0023+0423 four-way group merger at z ~ 0.84. The system consists of four interacting galaxy groups in the early stages of hierarchical cluster formation and, as such, provides a unique look at the level of processing and evolution already under way in the group environment prior to cluster assembly. We present the number counts of X-ray point sources detected in a field covering the entire Cl0023 structure, as well as a cross-correlation of these sources with our extensive spectroscopic database. Both the redshift distribution and cumulative number counts of X-ray sources reveal little evidence to suggest that the system contains X-ray luminous active galactic nuclei (AGNs) in excess to what is observed in the field population. If preprocessing is under way in the Cl0023 system, our observations suggest that powerful nuclear activity is not the predominant mechanism quenching star formation and driving the evolution of Cl0023 galaxies. We speculate that this is due to a lack of sufficiently massive nuclear black holes required to power such activity, as previous observations have found a high late-type fraction among the Cl0023 population. It may be that disruptive AGN-driven outflows become an important factor in the preprocessing of galaxy populations only during a later stage in the evolution of such groups and structures when sufficiently massive galaxies (and central black holes) have built up, but prior to hydrodynamical processes stripping them of their gas reservoirs.

قيم البحث

اقرأ أيضاً

88 - Tayyaba Zafar 2010
Context: GRB afterglows are excellent probes of gas and dust in star-forming galaxies at all epochs. It has been posited that dust in the early Universe must be different from dust at lower z. To date two reports directly support this contention, one of which is based on the spectral shape of GRB 050904 at z = 6.295. Aims: We reinvestigate the afterglow to understand dust at high z. We address the claimed evidence for unusual (SN-origin) dust in its host galaxy by simultaneously examining the X-ray and optical/NIR spectrophotometric data. Methods: We derive the intrinsic SED of the afterglow at 0.47, 1.25 and 3.4 days, by re-reducing the Swift X-ray data, the 1.25 days FORS2 z-Gunn photometric data, the spectroscopic and z-band photometric data at ~3 days from the Subaru telescope, as well as the critical UKIRT Z-band photometry at 0.47 days, upon which the claim of dust detection largely relies. Results: We find no evidence of dust extinction in the SED. We compute flux densities at lambda_rest = 1250 AA directly from the observed counts at all epochs. In the earliest epoch, 0.47 days, the Z-band suppression is found to be smaller (0.3 +- 0.2 mag) than previously reported and statistically insignificant (<1.5 sigma). Furthermore we find that the photometry of this band is unstable and difficult to calibrate. Conclusions: From the afterglow SED we demonstrate that there is no evidence for dust extinction -- the SED at all times can be reproduced without dust, and at 1.25 days in particular, significant extinction can be excluded, with A(3000 AA) < 0.27 mag at 95% confidence using the SN-type extinction curve. We conclude that there is no evidence of any extinction in the afterglow of GRB 050904 and that the presence of SN-origin dust in the host of GRB 050904 must be viewed skeptically. [abridged]
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV) > 3*10^44 erg/s) in which AGN-jetted outflows are creating and sustaining clear Xray cavities. Our sample covers the redshift range 0 < z < 0.6 and reveals strong evolution in the nuclear X-ray luminosities, such that the black holes in these systems have become on average at least 10 times fainter over the last 5 Gyrs. Mindful of potential selection effects, we propose two possible scenarios to explain our results: 1) either that the AGNs in BCGs with X-ray cavities are steadily becoming fainter, or more likely, 2) that the fraction of these BCGs with radiatively efficient nuclei is decreasing with time from roughly 60 per cent at z=0.6 to 30 per cent at z=0.1. Based on this strong evolution, we predict that a significant fraction of BCGs in z=1 clusters may host quasars at their centres, potentially complicating the search for such clusters at high redshift. In analogy with black-hole binaries and based on the observed Eddington ratios of our sources, we further propose that the evolving AGN population in BCGs with X-ray cavities may be transiting from a canonical low/hard state, analogous to that of X-ray binaries, to a quiescent state over the last 5 Gyrs.
Most galaxy evolutionary models require quasar feedback to regulate star formation in their host galaxies. In particular, at high redshift, models expect that feedback associated with quasar-driven outflows is so efficient that the gas in the host ga laxy is largely swept away or heated up, hence suppressing star formation in massive galaxies. We observationally investigate this phenomenon by using VLT-SINFONI integral field spectroscopy of the luminous quasar 2QZJ002830.4-281706 at z=2.4. The spectra sample the optical emission lines redshifted into the near-IR. The [OIII]5007 emission-line kinematics map reveals a massive outflow on scales of several kpc. The detection of narrow Halpha emission reveals star formation in the quasar host galaxy, with SFR=100 Msun/yr. However, the star formation is not distributed uniformly, but is strongly suppressed in the region with the highest outflow velocity and highest velocity dispersion. This result indicates that star formation in this region is strongly quenched by the quasar outflow, which is cleaning the galaxy disk of its molecular gas. This is one of the first direct observational proofs of quasar feedback quenching the star formation at high redshift.
QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2<z<5, the case for excess galaxy clustering around QSOs at z>6 is less clear. Previous studies with HST have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z=6.4 using the large field of view of the Suprime-Cam (34 x 27). Newly-installed CCDs allowed us to select Lyman break galaxies (LBG) at z~6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ~10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ~3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale. This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in its vicinity, or (2) that star-formation closest to the QSO occurs mostly in an obscured mode that is missed by our UV selection.
Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldov ich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to unconstrained high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift (z<1.5) from our analysis. However, at higher redshifts (z>2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا