ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal deterministic ring exploration with oblivious asynchronous robots

86   0   0.0 ( 0 )
 نشر من قبل Maria Potop-Butucaru
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Anissa Lamani




اسأل ChatGPT حول البحث

We consider the problem of exploring an anonymous unoriented ring of size $n$ by $k$ identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that $k$ must not divide $n$ for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size $n$ is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots whenever the size of the ring is even, and that five robots are sufficient for any $n$ that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal.

قيم البحث

اقرأ أيضاً

A mesh is a graph that divides physical space into regularly-shaped regions. Meshes computations form the basis of many applications, e.g. finite-element methods, image rendering, and collision detection. In one important mesh primitive, called a mes h update, each mesh vertex stores a value and repeatedly updates this value based on the values stored in all neighboring vertices. The performance of a mesh update depends on the layout of the mesh in memory. This paper shows how to find a memory layout that guarantees that the mesh update has asymptotically optimal memory performance for any set of memory parameters. Such a memory layout is called cache-oblivious. Formally, for a $d$-dimensional mesh $G$, block size $B$, and cache size $M$ (where $M=Omega(B^d)$), the mesh update of $G$ uses $O(1+|G|/B)$ memory transfers. The paper also shows how the mesh-update performance degrades for smaller caches, where $M=o(B^d)$. The paper then gives two algorithms for finding cache-oblivious mesh layouts. The first layout algorithm runs in time $O(|G|log^2|G|)$ both in expectation and with high probability on a RAM. It uses $O(1+|G|log^2(|G|/M)/B)$ memory transfers in expectation and $O(1+(|G|/B)(log^2(|G|/M) + log|G|))$ memory transfers with high probability in the cache-oblivious and disk-access machine (DAM) models. The layout is obtained by finding a fully balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree. The second algorithm runs faster by almost a $log|G|/loglog|G|$ factor in all three memory models, both in expectation and with high probability. The layout obtained by finding a relax-balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree.
We consider a swarm of $n$ autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robot s is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs $mathcal{O}(n^2)$ rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous $mathcal{FSYNC}$ model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and flags to communicate these states to neighbors in viewing range. They gather in time $mathcal{O}(n)$. In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), flags and states. We prove its correctness and an $mathcal{O}(n^2)$ time bound in the fully synchronous $mathcal{FSYNC}$ time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a $2times 2$ square, because in $mathcal{FSYNC}$ such configurations cannot be solved.
Databases need to allocate and free blocks of storage on disk. Freed blocks introduce holes where no data is stored. Allocation systems attempt to reuse such deallocated regions in order to minimize the footprint on disk. If previously allocated bloc ks cannot be moved, the problem is called the memory allocation problem, which is known to have a logarithmic overhead in the footprint. This paper defines the storage reallocation problem, where previously allocated blocks can be moved, or reallocated, but at some cost. The algorithms presented here are cost oblivious, in that they work for a broad and reasonable class of cost functions, even when they do not know what the cost function is. The objective is to minimize the storage footprint, that is, the largest memory address containing an allocated object, while simultaneously minimizing the reallocation costs. This paper gives asymptotically optimal algorithms for storage reallocation, in which the storage footprint is at most (1+epsilon) times optimal, and the reallocation cost is at most (1/epsilon) times the original allocation cost, which is also optimal. The algorithms are cost oblivious as long as the allocation/reallocation cost function is subadditive.
We prove the existence of an oblivious routing scheme that is $mathrm{poly}(log n)$-competitive in terms of $(congestion + dilation)$, thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set o f packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize $(congestion + dilation)$, defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have $(congestion + dilation)$ within a $mathrm{poly}(log n)$ factor of the best possible value. More precisely, for any integer hop-bound $h$, this oblivious routing scheme selects paths of length at most $h cdot mathrm{poly}(log n)$ and is $mathrm{poly}(log n)$-competitive in terms of $congestion$ in comparison to the best possible $congestion$ achievable via paths of length at most $h$ hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R{a}cke [FOCS 2002, STOC 2008], which are $O(log n)$-competitive in terms of $congestion$, but are not competitive in terms of $dilation$.
We present a streaming problem for which every adversarially-robust streaming algorithm must use polynomial space, while there exists a classical (oblivious) streaming algorithm that uses only polylogarithmic space. This is the first separation betwe en oblivious streaming and adversarially-robust streaming, and resolves one of the central open questions in adversarial robust streaming.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا