ﻻ يوجد ملخص باللغة العربية
A compact and fast electromagnetic calorimeter prototype was designed, built, and tested in preparation for a next-generation, high-rate muon g-2 experiment. It uses a simple assembly procedure: alternating layers of 0.5-mm-thick tungsten plates and 0.5-mm-diameter plastic scintillating fiber ribbons. This geometry leads to a detector having a calculated radiation length of 0.69 cm, a Moliere radius of 1.73 cm, and a measured intrinsic sampling resolution term of (11.8pm1.1)/sqrt{E(GeV)}, in the range 1.5 to 3.5 GeV. The construction procedure, test beam results, and GEANT-4 comparative simulations are described.
A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam
New generation high-energy physics experiments demand high precision tracking and accurate measurements of a large number of particles produced in the collisions of lementary particles and heavy-ions. Silicon-tungsten (Si-W) calorimeters provide the
The long slab is a new prototype for the SiW-Ecal, a silicon tungsten electromagnetic calorimeter for the ILD detector of the future International Linear Collider. This new prototype has been designed to demonstrate the ability to build a full length
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.2
A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a d