ترغب بنشر مسار تعليمي؟ اضغط هنا

The core fundamental plane of B2 radio galaxies

133   0   0.0 ( 0 )
 نشر من قبل Daniela Bettoni
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Bettoni




اسأل ChatGPT حول البحث

The photometric, structural and kinematical properties of the centers of elliptical galaxies, harbor important information of the formation history of the galaxies. In the case of non active elliptical galaxies these properties are linked in a way that surface brightness, break radius and velocity dispersion of the core lie on a fundamental plane similar to that found for their global properties. We construct the Core Fundamental Plane (CFP) for a sizeable sample of low redshift radio galaxies and compare it with that of non radio ellipticals. To pursue this aim we combine data obtained from high resolution HST images with medium resolution optical spectroscopy to derive the photometric and kinematic properties of ~40 low redshift radio galaxies. We find that the CFPs of radio galaxies is indistinguishable from that defined by non radio elliptical galaxies of similar luminosity. The characteristics of the CFP of radio galaxies are also consistent (same slope) with those of the Fundamental Plane (FP) derived from the global properties of radio (and non radio) elliptical galaxies. The similarity of CFP and FP for radio and non radio ellipticals suggests that the active phase of these galaxies has minimal effects for the structure of the galaxies.


قيم البحث

اقرأ أيضاً

94 - D. Bettoni 2001
We collected photometrical and dynamical data for 73 low red-shift (z<0.2) Radio Galaxies (LzRG) in order to study their Fundamental Plane (FP). For 22 sources we also present new velocity dispersion data, that complement the photometric data given i n our previous study of LzRG (Govoni et al. 2000a). It is found that the FP of LzRG is similar to the one defined by non-active elliptical galaxies, with LzRG representing the brightest end of the population of early type galaxies. Since the FP mainly reflects the virial equilibrium condition, our result implies that the global properties of early--type galaxies (defining the FP) are not influenced by the presence of gas accretion in the central black hole. This is fully in agreement with the recent results in black hole demography, showing that virtually all luminous spheroidal galaxies host a massive black hole and therefore may potentially become active. We confirm and extend to giant ellipticals the systematic increase of the mass-to-light ratio with galaxy luminosity.
We study the evolution of spectral early-type galaxies in clusters, groups and the field up to redshift 0.9 using the EDisCS dataset. We measure Re, Ie, and sigma for 154 cluster and 68 field galaxies. We study the evolution of the zero point of the fundamental plane (FP) and confirm results in the literature, but now also for the low cluster velocity dispersion regime. The mass-to-light ratio varies as Delta log M/L_B=(-0.54+-0.01)z=(-1.61+-0.01)log(1+z) in clusters, independent of their velocity dispersion. The evolution is stronger (Delta log M/L_B=(-0.76+-0.01)z=(-2.27+-0.03)log(1+z)) for field galaxies. The FP residuals correlate with galaxy mass and become progressively negative at low masses. The effect is visible at z>=0.7 for cluster galaxies and at z>=0.5 for field galaxies. We investigate the size evolution of our galaxy sample. We find that the half-luminosity radius for a galaxy with a dynamical or stellar mass of 2x10^11 Msol varies as (1+z)^{-1.0+-0.3} for both cluster and field galaxies. At the same time, stellar velocity dispersions grow with redshift, as (1+z)^{0.59+-0.10} at constant dynamical mass, and as (1+z)^{0.34+- 0.14} at constant stellar mass. The measured size evolution reduces to Re (1+z)^{-0.5+- 0.2} and sigma (1+z)^{0.41+-0.08}, at fixed dynamical masses, and Re (1+z)^{-0.68+-0.4} and sigma (1+z)^{0.19+-0.10}, at fixed stellar masses, when the progenitor bias (galaxies that locally are of spectroscopic early-type, but not very old, disappear from the EDisCS high-redshift sample; these galaxies tend to be large in size) is taken into account. Taken together, the variations in size and velocity dispersion imply that the luminosity evolution with redshift derived from the zero point of the FP is somewhat milder than that derived without taking these variations into account.
High magnetic fields are a distinguishing feature of neutron stars and the existence of sources (the soft gamma repeaters and the anomalous X-ray pulsars) hosting an ultra-magnetized neutron star (or magnetar) has been recognized in the past few deca des. Magnetars are believed to be powered by magnetic energy and not by rotation, as with normal radio pulsars. Until recently, the radio quietness and magnetic fields typically above the quantum critical value (Bq~4.4x10^{13} G), were among the characterizing properties of magnetars. The recent discovery of radio pulsed emission from a few of them, and of a low dipolar magnetic field soft gamma repeater, weakened further the idea of a clean separation between normal pulsars and magnetars. In this Letter we show that radio emission from magnetars might be powered by rotational energy, similarly to what occurs in normal radio pulsars. The peculiar characteristics of magnetars radio emission should be traced in the complex magnetic geometry of these sources. Furthermore, we propose that magnetar radio activity or inactivity can be predicted from the knowledge of the stars rotational period, its time derivative and the quiescent X-ray luminosity.
We present a complete analysis of the Fundamental Plane of early-type galaxies (ETGs) in the nearby universe. The sample, as defined in paper I, comprises 39,993 ETGs located in environments covering the entire domain in local density (from field to cluster). We derive the FP of ETGs in the grizYJHK wavebands with a detailed discussion on fitting procedure, bias due to selection effects and bias due to correlated errors on r_e and mue as key factors in obtaining meaningful FP coefficients. Studying the Kormendy relation we find that its slope varies from g (3.44+-0.04) to K (3.80+-0.02) implying that smaller size ETGs have a larger ratio of optical/NIR radii than galaxies with larger re. We also examine the Faber-Jackson relation and find that its slope is similar for all wavebands, within the uncertainties, with a mean value of 0.198+-0.007. The variation of the FP coefficients for the magnitude selected sample from g through K amounts to 11%, negligible, and 10%, respectively. We find that the tilt of the FP becomes larger for higher Sersic index and larger axis ratios, independent of the waveband we measured the FP variables. This suggests that these variations are likely related to structural and dynamical differences of galaxian properties. We also show that the current semi-analytical models of galaxy formation reproduce very well the variation of age and metallicity of the stellar populations present in massive ETGs as a function of the stellar mass in these systems. In particular, we find that massive ETGs have coeval stellar pops with age varying only by a few % per decade in mass, while metallicity increases with stellar mass by 23% per mass decade.
123 - A. Bonchi 2012
We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the large st catalogue of AGN belonging to statistically well defined samples where radio, X and K band information exists. At variance with previous studies, radio upper limits have been statistically taken into account using a Bayesian Maximum Likelihood fitting method. It resulted that a good fit is obtained assuming a plane in the 3D L_R-L_X-L_K space, namely logL_R= xi_X logL_X + xi_K logL_K + xi_0, having a ~1 dex wide (1 sigma) spread in radio luminosity. As already shown, no evidence of bimodality in the radio luminosity distribution was found and therefore any definition of radio loudness in AGN is arbitrary. Using scaling relations between the BH mass and the host galaxy K-band luminosity, we have also derived a new estimate of the BH fundamental plane (in the L_5GHz -L_X-M_BH space). Our analysis shows that previous measures of the BH fundamental plane are biased by ~0.8 dex in favor of the most luminous radio sources. Therefore, many AGN studies, where the BH fundamental plane is used to investigate how AGN regulate their radiative and mechanical luminosity as a function of the accretion rate, or many AGN/galaxy co-evolution models, where radio-feedback is computed using the AGN fundamental plane, should revise their conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا