ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic iron spread and a new metallicity scale for Globular Clusters

128   0   0.0 ( 0 )
 نشر من قبل Eugenio Carretta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eugenio Carretta




اسأل ChatGPT حول البحث

We have collected spectra of about 2000 red giant branch (RGB) stars in 19 Galactic globular clusters (GC) using FLAMES@VLT (about 100 star with GIRAFFE and about 10 with UVES, respectively, in each GC). These observations provide an unprecedented, precise, and homogeneous data-set of Fe abundances in GCs. We use it to study the cosmic scatter of iron and find that, as far as Fe is concerned, most GCs can still be considered mono-metallic, since the upper limit to the scatter in iron is less than 0.05 dex, meaning that the degree of homogeneity is better than 12%. The scatter in Fe we find seems to have a dependence on luminosity, possibly due to the well-known inadequacies of stellar atmospheres for upper-RGB stars and/or to intrinsic variability. It also seems to be correlated with cluster properties, like the mass, indicating a larger scatter in more massive GCs which is likely a (small) true intrinsic scatter. The 19 GCs, covering the metallicity range of the bulk of Galactic GCs, define an accurate and updated metallicity scale. We provide transformation equations for a few existing scales. We also provide new values of [Fe/H], on our scale, for all GCs in the Harris catalogue.



قيم البحث

اقرأ أيضاً

Globular Clusters (GCs) are now well known to almost universally show multiple popu-lations (MPs). The HST UV Legacy Survey of a large number of Galactic GCs in UV filters optimized to explore MPs finds that a small fraction of GCs, termed Type II, a lso display more complex, anomalous behavior. Several well-studied Type II GCs show intrinsic Fe abundance variations, suggesting that the other, less well-studied, Type II GCs should also exhibit similar behavior. Our aim is to perform the first detailed metallicity analysis of NGC 1261, an intermediate mass Type II GC, in order to determine if this object shows an intrinsic Fe variation. We determined the Fe abundance in eight red giant members using Magellan-MIKE and UVES-FLAMES high-resolution, high S/N spectroscopy. The full range of [Fe/H] for the entire sample from the spectra is from -1.05 to -1.43 dexwith an observed spread sigma_obs=0.133 dex. Compared with the total internal error of Sigma_tot=0.06,this indicates a significant intrinsic metallicity spread of Sigma_int=0.119 dex. We found a very similar variation in [Fe/H] using an independent method to derive the atmospheric parameters based on near-IR photometry. More importantly, the mean metallicity of the five presumed normal metallicity stars is -1.37+/-0.02, while that of the three presumed anomalous/highmetallicity stars is -1.18+/-0.09. This difference is significant at the $pm$2.4Sigma level. We find indications from existing data of other Type II GCs that several of them presumedto have real metallicity spreads may in fact posses none. The minimum mass required for a GC to acquire an intrinsic Fe spread appears to be $pm$10^5 Msun. We find no strong correlation betwee nmass and metallicity variation for Type II GCs. The metallicity spread is also independent of the fraction of anomalous stars within the Type II GCs and of GC origin.
We present the results of the analysis of deep photometric data of 32 Galactic globular clusters. We analysed 69 parallel field images observed with the Wide Field Channel of the Advanced Camera for Surveys of the Hubble Space Telescope which complem ented the already available photometry from the globular cluster treasury project covering the central regions of these clusters. This unprecedented data set has been used to calculate the relative fraction of stars at different masses (i.e. the present-day mass function) in these clusters by comparing the observed distribution of stars along the cluster main sequence and across the analysed field of view with the prediction of multimass dynamical models. For a subsample of 31 clusters, we were able to obtain also the half-mass radii, mass-to-light ratios and the mass fraction of dark remnants using available radial velocity information. We found that the majority of globular clusters have single power law mass functions $F(m) propto m^alpha$ with slopes $alpha>-1$ in the mass range $0.2<m/text{M}_{odot}<0.8$. By exploring the correlations between the structural/dynamical and orbital parameters, we confirm the tight anticorrelation between the mass function slopes and the half-mass relaxation times already reported in previous works, and possible second-order dependence on the cluster metallicity. This might indicate the relative importance of both initial conditions and evolutionary effects on the present-day shape of the mass function.
We present abundances of globular clusters in the Milky Way and Fornax from integrated light spectra. Our goal is to evaluate the consistency of the integrated light analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of 7 clusters from our previous publications and results for 5 new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from integrated light spectra agrees to $sim$0.1 dex for globular clusters with metallicities as high as [Fe/H]=$-0.3$, but the abundances measured for more metal rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the integrated light analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the integrated light results for other important elements.
227 - E. Pancino 2017
The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach suffi cient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majority of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to 15 kpc, and the nearby clusters will have radial velocities to a few km/s ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to 10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km/s or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V<17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.
Observed mass-to-light ratios (M/L) of metal-rich globular clusters (GCs) disagree with theoretical predictions. This discrepancy is of fundamental importance since stellar population models provide the stellar masses that underpin most of extragalac tic astronomy, near and far. We have derived radial velocities for 1,622 stars located in the centres of 59 Milky Way GCs - twelve of which have no previous kinematic information - using integral-field unit data from the WAGGS project. Using N-body models, we then determine dynamical masses and M/L ratios for the studied clusters. Our sample includes NGC 6528 and NGC 6553, which extend the metallicity range of GCs with measured M/L up to [Fe/H] ~ -0.1 dex. We find that metal-rich clusters have M/L more than two times lower than what is predicted by simple stellar population models. This confirms that the discrepant M/L-[Fe/H] relation remains a serious concern. We explore how our findings relate to previous observations, and the potential causes for the divergence, which we conclude is most likely due to dynamical effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا