ترغب بنشر مسار تعليمي؟ اضغط هنا

EC-SNe from super-AGB progenitors: theoretical models vs. observations

66   0   0.0 ( 0 )
 نشر من قبل Maria Letizia Pumo
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a parametric approach, we determine the configuration of super-AGB stars at the explosion as a function of the initial mass and metallicity, in order to verify if the EC-SN scenario involving a super-AGB star is compatible with the observations regarding SN2008ha and SN2008S. The results show that both the SNe can be explained in terms of EC-SNe from super-AGB progenitors having a different configuration at the collapse. The impact of these results on the interpretation of other sub-luminous SNe is also discussed.

قيم البحث

اقرأ أيضاً

The Galactic population of close white dwarf binaries is expected to provide the largest number of gravitational wave sources for low frequency detectors such as the Laser Interferometer Space Antenna (LISA). Current data analysis techniques have dem onstrated the capability of resolving on the order of $10^4$ white dwarf binaries from a 2 year observation. Resolved binaries are either at high frequencies or large amplitudes. Such systems are more likely to be high-mass binaries, a subset of which will be progenitors of SNe Ia in the double degenerate scenario. We report on results of a study of the properties of resolved binaries using a population synthesis model of the Galactic white dwarf binaries and a LISA data analysis algorithm using Mock LISA Data Challenge tools.
Abridged: Getting a better understanding of the evolution and nucleosynthetic yields of the most metal-poor stars (appr. Z<=10^-5) is critical because they are part of the big picture of the history of the primitive Universe. Yet many of the remainin g unknowns of stellar evolution lie in the birth, life, and death of these objects. We review stellar evolution of intermediate-mass (IMS) Z<=10-5 models existing in the literature, with a focus on the problem of their final fates. The depth and efficiency of mixing episodes are critical to determine the mass limits for the formation of electron-capture supernovae, but our knowledge of these phenomena is not complete because they are strongly affected by the choice of input physics. We also consider the alternative SNI1/2 channel to form SNe out of the most metal-poor IMS. In this case, it is critical to understand the thermally-pulsing AGB evolution until the late stages. Efficient second dredge-up and, later, third dredge-up episodes could be able to pollute stellar envelopes enough for the stars to undergo thermal pulses in a way very similar to that of higher initial Z objects. Inefficient 2nd and/or 3rd dredge-up may leave an almost pristine envelope, unable to sustain strong stellar winds. This may allow the H-exhausted core to grow to M_Ch before the envelope is lost, and thus let the star explode as a SNI1/2. After reviewing the information available on these two possible channels for the formation of SNe, we discuss existing nucleosynthetic yields of stars of metallicity Z<=10^-5, and present an example of nucleosynthetic calculations for a thermally-pulsing Super-AGB star of Z=10^-5. We compare theoretical predictions with observations of the lowest [Fe/H] objects detected. The review closes by discussing current open questions as well as possible fruitful avenues for future research.
We present an analysis of high precision V light curves (LC) for 18 local Type Ia Supernovae, SNe Ia, as obtained with the same telescope and setup at the Las Campanas Observatory (LCO). This homogeneity provides an intrinsic accuracy a few hundreds of a magnitude both with respect to individual LCs and between different objects. Based on the Single Degenerate Scenario, SD, we identify patterns which have been predicted by model calculations as signatures of the progenitor and accretion rate which change the explosion energy and the amount of electron capture, respectively. Using these templates as principle components and the overdetermined system of SN pairs, we reconstruct the properties of progenitors and progenitor systems. All LCO SNe Ia follow the brightness decline relation but 2001ay. After subtraction of the two components, the remaining scatter is reduced to 0.01-0.03m. Type SNe Ia seem to originate from progenitors with Main Sequence masses of 3Mo with the exception of two subluminous SNe Ia with < 2Mo. The component analysis indicates a wide range of accretion rates in the progenitor systems closing the gap to accretion induced collapses (AIC). SN1991t-like objects show differences in $dm15$ but no tracers of our secondary parameters. This may point to a different origin such as DD-Scenario or the Pulsating Delayed Detonations. SN2001ay does not follow the decline relation. It can be understood in the framework of C-rich WDs, and this group may produce an anti-Phillips relation. We suggest that this may be a result of a common envelope phase and mixing during central He burning as in SN1987A.
268 - Pavel Denissenkov 2014
When carbon is ignited off-center in a CO core of a super-AGB star, its burning in a convective shell tends to propagate to the center. Whether the C flame will actually be able to reach the center depends on the efficiency of extra mixing beneath th e C convective shell. Whereas thermohaline mixing is too inefficient to interfere with the C-flame propagation, convective boundary mixing can prevent the C burning from reaching the center. As a result, a C-O-Ne white dwarf (WD) is formed, after the star has lost its envelope. Such a hybrid WD has a small CO core surrounded by a thick ONe zone. In our 1D stellar evolution computations the hybrid WD is allowed to accrete C-rich material, as if it were in a close binary system and accreted H-rich material from its companion with a sufficiently high rate at which the accreted H would be processed into He under stationary conditions, assuming that He could then be transformed into C. When the mass of the accreting WD approaches the Chandrasekhar limit, we find a series of convective Urca shell flashes associated with high abundances of 23Na and 25Mg. They are followed by off-center C ignition leading to convection that occupies almost the entire star. To model the Urca processes, we use the most recent well-resolved data for their reaction and neutrino-energy loss rates. Because of the emphasized uncertainty of the convective Urca process in our hybrid WD models of SN Ia progenitors, we consider a number of their potentially possible alternative instances for different mixing assumptions, all of which reach a phase of explosive C ignition, either off or in the center. Our hybrid SN Ia progenitor models have much lower C to O abundance ratios at the moment of the explosive C ignition than their pure CO counterparts, which may explain the observed diversity of the SNe Ia.
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high density CS medium. The light curve is similar in shape to that of SN 1998S and SN 1979C, although significantly fainter at maximum light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail phase decay rate consistent with that of ^{56}Co. We propose that this is evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun). The large MIR flux detected shortly after explosion can be explained by a light echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a combination of warm newly-formed ejecta dust together with shock-heated dust in the CS environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90AU and outer radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~ 10^{4.6} L_Sun. The combination of our monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8 M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main properties of the electron capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا