ﻻ يوجد ملخص باللغة العربية
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significa
Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band t
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described
Spring-antispring systems have been investigated as possible low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low va
The first detection of a gravitational-wave signal of a coalescence of two black holes marked the beginning of the era of gravitational-wave astronomy, which opens exciting new possibilities in the fields of astronomy, astrophysics and cosmology. The