ترغب بنشر مسار تعليمي؟ اضغط هنا

First-Principles Study for the Anisotropy of Iron-based Superconductors toward Power and Device Applications

171   0   0.0 ( 0 )
 نشر من قبل Hiroki Nakamura
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Performing the first-principles calculations, we investigate the anisotropy in the superconducting state of iron-based superconductors to gain an insight into their potential applications. The anisotropy ratio $gamma_lambda$ of the c-axis penetration depth to the ab-plane one is relatively small in BaFe2As2 and LiFeAs, i.e., $gamma_lambda sim 3$, indicating that the transport applications are promising in these superconductors. On the other hand, in those having perovskite type blocking layers such as Sr2ScFePO3 we find a very large value, $gamma_lambda sim 200$, comparable to that in strongly anisotropic high-Tc cuprate Bi2Sr2CaCu2O{8-delta}. Thus, the intrinsic Josephson junction stacks are expected to be formed along the c-axis, and novel Josephson effects due to the multi-gap nature are also suggested in these superconductors.



قيم البحث

اقرأ أيضاً

Iron with a large magnetic moment was widely believed to be harmful to the emergence of superconductivity because of the competition between the static ordering of electron spins and the dynamic formation of electron pairs (Cooper pairs). Thus, the d iscovery of a high critical temperature (Tc) iron-based superconductor (IBSC) in 2008 was accepted with surprise in the condensed matter community and rekindled extensive study globally. IBSCs have since grown to become a new class of high-Tc superconductors next to the high-Tc cuprates discovered in 1986. The rapid research progress in the science and technology of IBSCs over the past decade has resulted in the accumulation of a vast amount of knowledge on IBSC materials, mechanisms, properties, and applications with the publication of more than several tens of thousands of papers. This article reviews recent progress in the technical applications (bulk magnets, thin films, and wires) of IBSCs in addition to their fundamental material characteristics. Highlights of their applications include high-field bulk magnets workable at 15-25 K, thin films with high critical current density (Jc) > 1 MA/cm2 at ~10 T and 4 K, and an average Jc of 1.3*104 A/cm2 at 10 T and 4 K achieved for a 100-m-class-length wire. These achievements are based on the intrinsically advantageous properties of IBSCs such as the higher crystallographic symmetry of the superconducting phase, higher critical magnetic field, and larger critical grain boundary angle to maintain high Jc. These properties also make IBSCs promising for applications using high magnetic fields.
We study hydrogen doping effects in an iron-based superconductor LaFeAsO_(1-y) by using the first-principles calculation and explore the reason why the superconducting transition temperature is remarkably enhanced by the hydrogen doping. The present calculations reveal that a hydrogen cation stably locating close to an iron atom attracts a negatively-charged FeAs layer and results in structural distortion favorable for further high temperature transition. In fact, the lattice constant a averaged over the employed supercell shrinks and then the averaged As-Fe-As angle approaches 109.74 degrees with increasing the hydrogen doping amount. Moreover, the calculations clarify electron doping effects of the solute hydrogen and resultant Fermi-level shift. These insights are useful for design of high transition-temperature iron-based superconductors.
A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO needs theoretical elucidation. Based on first-principles calculations on the electronic structure, lattice dynamics, and electron-phonon coupling of LaO, we show that the superconducting pairing in LaO belongs to the conventional Bardeen-Cooper-Schrieffer (BCS) type. Remarkably, the electrons and phonons of the heavy La atoms, instead of those of the light O atoms, contribute most to the electron-phonon coupling. We further find that both the biaxial tensile strain and the pure electron doping can enhance the superconducting $T_c$ of LaO. With the synergistic effect of electron doping and tensile strain, the $T_c$ could be even higher, for example, 11.11 K at a doping of 0.2 electrons per formula unit and a tensile strain of $4%$. Moreover, our calculations show that the superconductivity in LaO thin film remains down to the trilayer thickness with a $T_c$ of 1.4 K.
Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, ev en though the principal combination of topological bands and superconductivity promises exotic unprecedented avenues of superconducting states and Majorana bound states (MBSs), the central building block for topological quantum computation. Along with progressing laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) towards high energy and momentum resolution, we have resolved topological insulator (TI) and topological Dirac semimetal (TDS) bands near the Fermi level ($E_{text{F}}$) in the iron-based superconductors Li(Fe,Co)As and Fe(Te,Se), respectively. The TI and TDS bands can be individually tuned to locate close to $E_{text{F}}$ by carrier doping, allowing to potentially access a plethora of different superconducting topological states in the same material. Our results reveal the generic coexistence of superconductivity and multiple topological states in iron-based superconductors, rendering these materials a promising platform for high-$T_{text{c}}$ topological superconductivity.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا