ﻻ يوجد ملخص باللغة العربية
Three instances are discussed in which results produced by chiral perturbation theory can be reliably pushed to high space-like values of transferred momenta: 1. nuclear interactions, 2. nucleon sigma-term and 3. space-like structure of the pion
The structure and electroweak properties of the pion in symmetric nuclear matter are presented in the framework of the Nambu--Jona-Lasinio model. The pion is described as a bound state of a dressed quark-antiquark pair governed by the Bethe-Salpeter
This article presents several challenges to nuclear many-body theory and our understanding of the stability of nuclear matte r. In order to achieve this, we present five different cases, starting with an idealized toy model. These cases expose proble
Starting from a set of different two- and three-nucleon interactions from chiral effective field theory, we use the importance-truncated no-core shell model for ab initio calculations of excitation energies as well as electric quadrupole (E2) and mag
This review aims at a critical discussion of the interplay between effective interactions derived from various many-body approaches and spectroscopic data extracted from large scale shell-model studies. To achieve this, our many-body scheme starts wi
Chiral expansions of the two-pion exchange components of both two- and three-nucleon forces are reviewed and a discussion is made of the predicted pattern of hierarchies. The strength of the scalar-isoscalar central potential is found to be too large