ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear interactions and the space-like structure of the pion

281   0   0.0 ( 0 )
 نشر من قبل Manoel Robilotta
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف M. R. Robilotta




اسأل ChatGPT حول البحث

Three instances are discussed in which results produced by chiral perturbation theory can be reliably pushed to high space-like values of transferred momenta: 1. nuclear interactions, 2. nucleon sigma-term and 3. space-like structure of the pion

قيم البحث

اقرأ أيضاً

The structure and electroweak properties of the pion in symmetric nuclear matter are presented in the framework of the Nambu--Jona-Lasinio model. The pion is described as a bound state of a dressed quark-antiquark pair governed by the Bethe-Salpeter equation. For the in-medium current-light-quark properties we use the quark-meson coupling model, which describes successfully the properties of hadron in a nuclear medium. We found that the light-quark condensates, the pion decay constant and pion-quark coupling constant decrease with increasing nuclear matter density. We then predict the modifications of the charge radius of the charged pion in nuclear matter.
This article presents several challenges to nuclear many-body theory and our understanding of the stability of nuclear matte r. In order to achieve this, we present five different cases, starting with an idealized toy model. These cases expose proble ms that need to be understood in order to match recent advances in nuclear theory with current experimental programs in low-energy nuclear physics. In particular, we focus on our current understanding, or lack thereof, of many-body forces, and how they evolve as functions of the number of particles . We provide examples of discrepancies between theory and experiment and outline some selected perspectives for future research directions.
111 - Angelo Calci , Robert Roth 2016
Starting from a set of different two- and three-nucleon interactions from chiral effective field theory, we use the importance-truncated no-core shell model for ab initio calculations of excitation energies as well as electric quadrupole (E2) and mag netic dipole (M1) moments and transition strengths for selected p-shell nuclei. We explore the sensitivity of the excitation energies to the chiral interactions as a first step towards and systematic uncertainty propagation from chiral inputs to nuclear structure observables. The uncertainty band spanned by the different chiral interactions is typically in agreement with experimental excitation energies, but we also identify observables with notable discrepancies beyond the theoretical uncertainty that reveal insufficiencies in the chiral interactions. For electromagnetic observables we identify correlations among pairs of E2 or M1 observables based on the ab initio calculations for the different interactions. We find extremely robust correlations for E2 observables and illustrate how these correlations can be used to predict one observable based on an experimental datum for the second observable. In this way we circumvent convergence issues and arrive at far more accurate results than any direct ab initio calculation. A prime example for this approach is the quadrupole moment of the first 2^+ state in C-12, which is predicted with an drastically improved accuracy.
115 - D.J. Dean 2004
This review aims at a critical discussion of the interplay between effective interactions derived from various many-body approaches and spectroscopic data extracted from large scale shell-model studies. To achieve this, our many-body scheme starts wi th the free nucleon-nucleon (NN) interaction, typically modelled on various meson exchanges. The NN interaction is in turn renormalized in order to derive an effective medium dependent interaction. The latter is in turn used in shell-model calculations of selected nuclei. We also describe how to sum up the parquet class of diagrams and present initial uses of the effective interactions in coupled cluster many-body theory.
191 - M. R. Robilotta 2008
Chiral expansions of the two-pion exchange components of both two- and three-nucleon forces are reviewed and a discussion is made of the predicted pattern of hierarchies. The strength of the scalar-isoscalar central potential is found to be too large and to defy expectations from the symmetry. The causes of this effect can be understood by studying the nucleon scalar form factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا