ﻻ يوجد ملخص باللغة العربية
We study a mass transport model, where spherical particles diffusing on a ring can stochastically exchange volume $v$, with the constraint of a fixed total volume $V=sum_{i=1}^N v_i$, $N$ being the total number of particles. The particles, referred to as $p$-spheres, have a linear size that behaves as $v_i^{1/p}$ and our model thus represents a gas of polydisperse hard rods with variable diameters $v_i^{1/p}$. We show that our model admits a factorized steady state distribution which provides the size distribution that minimizes the free energy of a polydisperse hard rod system, under the constraints of fixed $N$ and $V$. Complementary approaches (explicit construction of the steady state distribution on the one hand ; density functional theory on the other hand) completely and consistently specify the behaviour of the system. A real space condensation transition is shown to take place for $p>1$: beyond a critical density a macroscopic aggregate is formed and coexists with a critical fluid phase. Our work establishes the bridge between stochastic mass transport approaches and the optimal polydispersity of hard sphere fluids studied in previous articles.
A system of hard rigid rods of length $k$ on hypercubic lattices is known to undergo two phases transitions when chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase, and on further increase to
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t
A variational Monte Carlo calculation of the one-body density matrix and momentum distribution of a system of Fermi hard rods (HR) is presented and compared with the same quantities for its bosonic counterpart. The calculation is exact within statist
In a statistical ensemble with $M$ microstates, we introduce an $M times M$ correlation matrix with the correlations between microstates as its elements. Using eigenvectors of the correlation matrix, we can define eigen microstates of the ensemble. T
The thermodynamics of the discrete nonlinear Schrodinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized