ﻻ يوجد ملخص باللغة العربية
The 18O(p,alpha)15N reaction rate has been extracted by means of the Trojan-Horse method. For the first time the contribution of the 20-keV peak has been directly evaluated, giving a value about 35% larger than previously estimated. The present approach has allowed to improve the accuracy of a factor 8.5, as it is based on the measured strength instead of educated guesses or spectroscopic measurements. The contribution of the 90-keV resonance has been determined as well, which turned out to be of negligible importance to astrophysics.
The $^{18}{rm O}(p,alpha)^{15}{rm N}$ reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside AGB stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect meas
The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {simeq} 30 {cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to
Background: Type I x-ray bursts are the most frequent thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The $^{30}$S($alpha$,p) reaction plays a critical role in burst models, ye
We investigate the quantitative constraint on the triple-alpha reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed i
The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy,