ﻻ يوجد ملخص باللغة العربية
The magnetic and electronic modifications induced at the interfaces in (SrMnO$_{3}$)$_{n}$/(LaMnO$_{3}$)$_{2n}$ superlattices have been investigated by linear and circular magnetic dichroism in the Mn L$_{2,3}$ x-ray absorption spectra. Together with theoretical calculations, our data demonstrate that the charge redistribution across interfaces favors in-plane ferromagnetic (FM) order and $e_{g}(x^{2}-y^{2})$ orbital occupation, in agreement with the average strain. Far from interfaces, inside LaMnO$_3$, electron localization and local strain favor antiferromagnetism (AFM) and $e_{g}(3z^{2}-r^{2})$ orbital occupation. For $n=1$ the high density of interfacial planes ultimately leads to dominant FM order forcing the residual AFM phase to be in-plane too, while for $n geq 5$ the FM layers are separated by AFM regions having out-of-plane spin orientation.
Superlattices of (LaMnO3)2n/(SrMnO3)n (n=1 to 5), composed of the insulators LaMnO3 and SrMnO3, undergo a metal-insulator transition as a function of n, being metallic for n<=2 and insulating for n>=3. Measurements of transport, magnetization and pol
We measure the optical conductivity of (SrMnO3)n/(LaMnO3)2n superlattices (SL) for n=1,3,5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator to metal transition (IMT) for n leq 3, driven by the softening of a polaronic mid-infrared band. A
Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control bet
CaBaFe4O7 is a mixed-valent transition metal oxide having both Fe2+ and Fe3+ ions in tetrahedral coordination. Here we characterize its magnetic properties by magnetization measurements and investigate its local electronic structure using soft x-ray
The two-orbital double-exchange model is employed for the study of the magnetic and orbital orders in ($R$MnO$_3$)$_n$/($A$MnO$_3$)$_{2n}$ ($R$: rare earths; $A$: alkaline earths) superlattices. The A-type antiferromagnetic order is observed in a bro