ﻻ يوجد ملخص باللغة العربية
We cross-correlate the SDSS DR3 quasar sample with FIRST and the Vestergaard et al. black hole (BH) mass sample to compare the mean accretion histories of optical and radio quasars. We find significant statistical evidence that radio quasars have a higher mean Eddington ratio Lambda at z > 2 with respect to optical quasars, while the situation is clearly reverse at z < 1. At z > 2 radio quasars happen to be less massive than optical quasars; however, as redshift decreases radio quasars appear in increasingly more massive BHs with respect to optical quasars. These two trends imply that radio sources are not a mere random subsample of optical quasars. No clear correlation between radio activity and BH mass and/or accretion rate is evident from our data, pointing to other BH properties, possibly the spin, as the driver of radio activity. We have checked that our main results do not depend on any evident bias. We perform detailed modelling of reasonable accretion histories for optical and radio quasars, finding that radio quasars grow by a factor of a few, at the most, since z ~ 4. The comparison between the predicted mass function of active radio quasars and the observed optical luminosity function of radio quasars, implies a significantly lower probability for lower mass BHs to be radio loud at all epochs, in agreement with what is observed in the local universe.
With Gaia, it will become possible to directly link the radio and optical reference frames using a large number of common objects. For the most accurate radio-optical link, it is important to know the level of spatial coincidence between the quasars
We report the results of our intensive intranight optical monitoring of 8 `radio-intermediate quasars (RIQs) having flat or inverted radio spectra. The monitoring was carried out in {it R-} band on 25 nights during 2005-09. An intranight optical vari
Over the last decade, quasar sample sizes have increased from several thousand to several hundred thousand, thanks mostly to SDSS imaging and spectroscopic surveys. LSST, the next-generation optical imaging survey, will provide hundreds of detections
We present the study on the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS, FIRST catalogs and XMM-Newton archives. A sample of radio-quiet SDSS quasars without FIRST radio detection is also asse
Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei