ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Models for Energy Consumption in Infrastructure WLAN STAs Carrying TCP Traffic

93   0   0.0 ( 0 )
 نشر من قبل Pranav Agrawal
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Pranav Agrawal




اسأل ChatGPT حول البحث

We develop analytical models for estimating the energy spent by stations (STAs) in infrastructure WLANs when performing TCP controlled file downloads. We focus on the energy spent in radio communication when the STAs are in the Continuously Active Mode (CAM), or in the static Power Save Mode (PSM). Our approach is to develop accurate models for obtaining the fraction of times the STA radios spend in idling, receiving and transmitting. We discuss two traffic models for each mode of operation: (i) each STA performs one large file download, and (ii) the STAs perform short file transfers. We evaluate the rate of STA energy expenditure with long file downloads, and show that static PSM is worse than just using CAM. For short file downloads we compute the number of file downloads that can be completed with given battery capacity, and show that PSM performs better than CAM for this case. We provide a validation of our analytical models using the NS-2 simulator. In contrast to earlier work on analytical modeling of PSM, our models that capture the details of the interactions between the 802.11 MAC in PSM and certain aspects of TCP.

قيم البحث

اقرأ أيضاً

93 - Lily Minear , Eric Zhang 2014
Multiple accesses are common for most mobile devices today. This technological advance opens up a new design space for improving the communication performance of mobile devices. Multipath TCP is a TCP extension that enables using multiple network pat hs between two end systems for a single TCP connection, increasing performance and reliability. Meanwhile, when operating multiple active interfaces, multipath-TCP also consumes substantial more power and drains out bettery faster than using one interface. Thus, enabling Multipath TCP on mobile devices brings in new challenges. In this paper, we theoretically analyze the underlying design choices given by the Multipath TCP. In particular, we theoretically formulate the rela- tion between performance (throughput) and energy consumption for Multipath TCP. We find that sometime the throughput and energy consumption can be concurrently improved.
In paper the method for estimation of available bandwidth is supposed which does not demand the advanced utilities. Our method is based on the measurement of network delay $D$ for packets of different sizes $W$. The simple expression for available ba ndwidth $B_{av} =(W_2-W_1)/(D_2-D_1)$ is substantiated. For the experimental testing the measurement infrastructure for Russian segment of Internet was installed in framework of RFBR grant 06-07-89074.
In this paper, we present a generic plug-and-play controller that ensures fair and efficient operation of IEEE~802.11 infrastructure wireless local area networks with multiple co-channel access points, without any change to hardware/firmware of the n etwork devices. Our controller addresses performance issues of TCP transfers in multi-AP WLANs, by overlaying a coarse time-slicing scheduler on top of a cascaded fair queuing scheduler. The time slices and queue weights, used in our controller, are obtained from the solution of a constrained utility optimization formulation. A study of the impact of coarse time-slicing on TCP is also presented in this paper. We present an improved algorithm for adaptation of the service rate of the fair queuing scheduler and provide experimental results to illustrate its efficacy. We also present the changes that need to be incorporated to the proposed approach, to handle short-lived and interactive TCP flows. Finally, we report the results of experiments performed on a real testbed, demonstrating the efficacy of our controller.
This paper criticises the notion that long-range dependence is an important contributor to the queuing behaviour of real Internet traffic. The idea is questioned in two different ways. Firstly, a class of models used to simulate Internet traffic is s hown to have important theoretical flaws. It is shown that this behaviour is inconsistent with the behaviour of real traffic traces. Secondly, the notion that long-range correlations significantly affects the queuing performance of traffic is investigated by destroying those correlations in real traffic traces (by reordering). It is shown that the longer ranges of correlations are not important except in one case with an extremely high load.
96 - Reginald D. Smith 2009
The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables af fecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا