ترغب بنشر مسار تعليمي؟ اضغط هنا

Penguin and Box Diagrams in Unitary Gauge

41   0   0.0 ( 0 )
 نشر من قبل Jusak Tandean
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate one-loop diagrams in the unitary gauge that contribute to flavor-changing neutral current (FCNC) transitions involving two and four fermions. Specifically, we deal with penguin and box diagrams arising within the standard model (SM) and in nonrenormalizable extensions thereof with anomalous couplings of the W boson to quarks. We show explicitly in the SM the subtle cancelation among divergences from individual unitary-gauge contributions to some of the physical FCNC amplitudes and derive expressions consistent with those obtained using R_xi gauges in the literature. Some of our results can be used more generally in certain models involving fermions and gauge bosons which have interactions similar in form to those we consider.

قيم البحث

اقرأ أيضاً

A new approach is presented to evaluate multi-loop integrals, which appear in the calculation of cross-sections in high-energy physics. It relies on a fully numerical method and is applicable to a wide class of integrals with various mass configurati ons. As an example, the computation of two-loop planar and non-planar box diagrams is shown. The results are confirmed by comparisons with other techniques, including the reduction method, and by a consistency check using the dispersion relation.
We investigate properties of four point colour ordered scattering amplitudes in D=6 fishnet CFT. We show that such amplitudes are related via very simple relation to their D=4 counterparts considered previously in the literature. Exploiting this rela tion we obtain closed expression for such amplitudes and investigate its behaviour at weak and strong coupling. As by product of this investigation we also obtain generating function for on-shell D=6 Box ladder diagrams with l rungs.
We study first the box-diagram contribution to the $gamma p,rightarrow ,K^0Sigma^+$ process to understand the anomaly of the kaon photoproduction cross section from CBELSA/TAPS experiment at Electron Stretcher Accelerator (ELSA), where the imaginary part of the scattering amplitude from the box-diagrams is calculated by using Cutkoskys rules in the on-shell approximation while the real part of the amplitude is derived by dispersion relation calculations. Together with the results of the K-MAID model, the contribution of the box-diagrams fails to provide the sudden drop of the differential cross-section between the $K^*,Lambda$ and $K^*,Sigma$ thresholds. In addition, we include the $Delta(1940)$ resonance in the process to complete the description of the differential cross-section. Combining the contributions from the K-MAID model, the box-diagrams and the $Delta(1940)$ resonance, we have obtained the theoretical differential cross-section the $gamma p,rightarrow ,K^0Sigma^+$ process, which is compatible with the CBELSA/TAPS experimental data.
378 - Dmitri Petrov 2000
We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spi n-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sinc function representation for scalar field Feynman integrals are shared by fields with non-zero spin. We then investigate the application of the Sinc function representation to simple QED diagrams, including first order corrections to the propagators and the vertex.
We present the complete set of Feynman rules producing the rational terms of kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the R_xi gauge and in the Unitary gauge, therefore comple ting the results in the t Hooft-Feynman gauge already presented in a previous publication. As a consistency check, we verified, in the case of the process H -> gamma gamma and in a few other physical cases, the independence of the total Rational Part R_1+R_2 on the chosen gauge. In addition, we explicitly checked the equivalence of the limits xi -> infinity after or before the loop momentum integration in the definition of the Unitary gauge at 1-loop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا