ﻻ يوجد ملخص باللغة العربية
The static and dynamic properties of V^{4+} spins (S = 1/2) in the frustrated square lattice compound Pb2(VO)(PO4)2 were investigated by means of magnetic susceptibility chi and 31P nuclear magnetic resonance (NMR) shift (K) and 31P nuclear spin-lattice relaxation rate 1/T1 measurements on a single crystal. This compound exhibits long-range antiferromagnetic order below TN simeq 3.65 K. NMR spectra above TN show two distinct lines corresponding to two inequivalent P sites present in the crystal structure. The observed asymmetry in hyperfine coupling constant for the in-plane (P1) P site directly points towards a distortion in the square lattice at the microscopic level, consistent with the monoclinic crystal structure. The nearest- and next-nearest-neighbor exchange couplings were estimated to be J1/kB = (-5.4 pm 0.5) K (ferromagnetic) and J2/kB = (9.3 pm 0.6) K (antiferromagnetic), respectively. 1/(T1 T chi) is almost T-independent at high temperatures due to random fluctuation of spin moments. Below 20 K, the compound shows an enhancement of 1/(T1 T chi) which arises from a growth of antiferromagnetic spin correlations above TN. Below TN and for the field applied along the c-axis, the NMR spectrum for the P1 site splits into two satellites and the spacing between them increases monotonically with decreasing T which is a direct evidence of a columnar antiferromagnetic ordering with spins lying in the ab-plane. This type of magnetic ordering is consistent with expectation from the J2/J1 simeq -1.72 ratio. The critical exponent beta = 0.25 pm 0.02 estimated from the temperature dependence of sublattice magnetization as measured by 31P NMR at 11.13 MHz is close to the value (0.231) predicted for the two-dimensional XY model.
We study a short-range resonating valence bond (RVB) wave function with diagonal links on the square lattice that permits sign-problem free wave function Monte-Carlo studies. Special attention is given to entanglement properties, in particular, the s
Static and dynamic properties of the quasi-two-dimensional antiferromagnet K$_2$V$_3$O$_8$ have been investigated by $^{51}$V-NMR experiments on nonmagnetic V$^{5+}$ sites. Above the structural transition temperature $T_{rm{S}}$ = 115 K, NMR spectra
We present a new model compound with the S = 1/2 frustrated square lattice composed of the charge-transfer salt (o-MePy-V)PF6. Ab initio calculations indicate the formation of an S = 1/2 square lattice, in which six types of nearest-neighbor ferromag
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be ma
Single crystals of the frustrated S=1/2 ferro-antiferromagnetic proximate square lattice material SrZnZnVO(PO$_4$)$_2$ are studied in magnetometric, calorimetric, neutron diffraction and inelastic neutron scattering experiments. The measured spin wav