ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio potential energy surfaces for NH-NH with analytical long range

168   0   0.0 ( 0 )
 نشر من قبل Piotr S. \\.Zuchowski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present four-dimensional ab initio potential energy surfaces for the three spin states of the NH-NH complex. The potentials are partially based on the work of Dhont et al. [J. Chem. Phys. 123, 184302 (2005)]. The surface for the quintet state is obtained at the RCCSD(T)/aug-cc-pVTZ level of theory and the energy diferences with the singlet and triplet states are calculated at the CASPTn/aug-cc-pVTZ (n = 2; 3) level of theory. The ab initio potentials are fitted to coupled spherical harmonics in the angular coordinates, and the long range is further expanded as a power series in 1/R. The RCCSD(T) potential is corrected for a size-consistency error prior to fitting. The long-range coeficients obtained from the fit are found to be in good agreement with perturbation theory calculations.



قيم البحث

اقرأ أيضاً

Elastic and spin-changing inelastic collision cross sections are presented for cold and ultracold magnetically trapped NH. The cross sections are obtained from coupled-channel scattering calculations as a function of energy and magnetic field. We spe cifically investigate the influence of the intramolecular spin-spin, spin-rotation, and intermolecular magnetic dipole coupling on the collision dynamics. It is shown that $^{15}$NH is a very suitable candidate for evaporative cooling experiments. The dominant trap-loss mechanism in the ultracold regime originates from the intermolecular dipolar coupling term. At higher energies and fields, intramolecular spin-spin coupling becomes increasingly important. Our qualitative results and conclusions are fairly independent of the exact form of the potential and of the size of the channel basis set.
68 - J. P. Coe 2019
The concept of machine learning configuration interaction (MLCI) [J. Chem. Theory Comput. 2018, 14, 5739], where an artificial neural network (ANN) learns on the fly to select important configurations, is further developed so that accurate ab initio potential energy curves can be efficiently calculated. This development includes employing the artificial neural network also as a hash function for the efficient deletion of duplicates on the fly so that the singles and doubles space does not need to be stored and this barrier to scalability is removed. In addition configuration state functions are introduced into the approach so that pure spin states are guaranteed, and the transferability of data between geometries is exploited. This improved approach is demonstrated on potential energy curves for the nitrogen molecule, water, and carbon monoxide. The results are compared with full configuration interaction values, when available, and different transfer protocols are investigated. It is shown that, for all of the considered systems, accurate potential energy curves can now be efficiently computed with MLCI. For the potential curves of N$_{2}$ and CO, MLCI can achieve lower errors than stochastically selecting configurations while also using substantially less processor hours.
We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for wh ich the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.
We present elastic and inelastic spin-changing cross sections for cold and ultracold NH($X,^3Sigma^-$) + NH($X,^3Sigma^-$) collisions, obtained from full quantum scattering calculations on an accurate textit{ab initio} quintet potential-energy surfac e. Although we consider only collisions in zero field, we focus on the cross sections relevant for magnetic trapping experiments. It is shown that evaporative cooling of both fermionic $^{14}$NH and bosonic $^{15}$NH is likely to be successful for hyperfine states that allow for s-wave collisions. The calculated cross sections are very sensitive to the details of the interaction potential, due to the presence of (quasi-)bound state resonances. The remaining inaccuracy of the textit{ab initio} potential-energy surface therefore gives rise to an uncertainty in the numerical cross-section values. However, based on a sampling of the uncertainty range of the textit{ab initio} calculations, we conclude that the exact potential is likely to be such that the elastic-to-inelastic cross-section ratio is sufficiently large to achieve efficient evaporative cooling. This likelihood is only weakly dependent on the size of the channel basis set used in the scattering calculations.
We present state-selective measurements on the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH$_{3}$, where the two photoelectrons and two cations are measured i n coincidence using 3-D momentum imaging. Three dication electronic states are identified to contribute to the NH$_2^{+}$ + H$^{+}$ dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold NH$_2^+$ fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited NH$_2^+$ fragment with roughly 1 eV of internal energy. The NH$^{+}$ + H$^{+}$ + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the NH$_2^{+}$ + H$^{+}$ channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا