ﻻ يوجد ملخص باللغة العربية
We present a simple technique to fabricate graphene quantum dots in a cryostat. It relies upon the controlled rupture of a suspended graphene sheet subjected to the application of a large electron current. This results in the in-situ formation of a clean and ultra-narrow constriction, which hosts one quantum dot, and occasionally a few quantum dots in series. Conductance spectroscopy indicates that individual quantum dots can possess an addition energy as large as 180 meV and a level spacing as large as 25 meV. Our technique has several assets: (i) the dot is suspended, thus the electrostatic influence of the substrate is reduced, and (ii) contamination is minimized, since the edges of the dot have only been exposed to the vacuum in the cryostat.
We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in external magnetic field. The lateral size quantization opens an energy gap and broken sublattice symmetry results in a she
The unusual electronic properties of graphene, which are a direct consequence of its two-dimensional (2D) honeycomb lattice, have attracted a great deal of attention in recent years. Creation of artificial lattices that recreate graphenes honeycomb t
We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field
We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions.
Using the tight-binding approximation we calculated the magnetic susceptibility of graphene quantum dots (GQD) of different geometrical shapes and sizes, smaller than the magnetic length, when the magnetic properties are governed by the electron edge