ترغب بنشر مسار تعليمي؟ اضغط هنا

Supermodel Analysis of Galaxy Clusters

60   0   0.0 ( 0 )
 نشر من قبل Andrea Lapi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[abridged] We present the analysis of the X-ray brightness and temperature profiles for six clusters belonging to both the Cool Core and Non Cool Core classes, in terms of the Supermodel (SM) developed by Cavaliere, Lapi & Fusco-Femiano (2009). Based on the gravitational wells set by the dark matter halos, the SM straightforwardly expresses the equilibrium of the IntraCluster Plasma (ICP) modulated by the entropy deposited at the boundary by standing shocks from gravitational accretion, and injected at the center by outgoing blastwaves from mergers or from outbursts of Active Galactic Nuclei. The cluster set analyzed here highlights not only how simply the SM represents the main dichotomy Cool vs. Non Cool Core clusters in terms of a few ICP parameters governing the radial entropy run, but also how accurately it fits even complex brightness and temperature profiles. For Cool Core clusters like A2199 and A2597, the SM with a low level of central entropy straightforwardly yields the characteristic peaked profile of the temperature marked by a decline toward the center, without requiring currently strong radiative cooling and high mass deposition rates. Non Cool Core clusters like A1656 require instead a central entropy floor of a substantial level, and some like A2256 and even more A644 feature structured temperature profiles that also call for a definite floor extension; in such conditions the SM accurately fits the observations, and suggests that in these clusters the ICP has been just remolded by a merger event, in the way of a remnant cool core. The SM also predicts that dark matter halos with high concentration should correlate with flatter entropy profiles and steeper brightness in the outskirts; this is indeed the case with A1689.


قيم البحث

اقرأ أيضاً

We present an analysis of high-quality X-ray data out to the virial radius for the two galaxy clusters Abell 1246 and GMBCG J255.34805+64.23661 (J255) by means of our entropy-based SuperModel. For Abell 1246 we find that the spherically-averaged entr opy profile of the intracluster medium (ICM) progressively flattens outwards, and that a nonthermal pressure component amounting to ~20% of the total is required to support hydrostatic equilibrium in the outskirts; there we also estimate a modest value C~1.6 of the ICM clumping factor. These findings agree with previous analyses on other cool-core, relaxed clusters, and lend further support to the picture by Lapi et al. (2010) that relates the entropy flattening, the development of nonthermal pressure component, and the azimuthal variation of ICM properties to weakening boundary shocks. In this scenario clusters are born in a high-entropy state throughout, and are expected to develop on similar timescales a low entropy state both at the center due to cooling, and in the outskirts due to weakening shocks. However, the analysis of J255 testifies how such a typical evolutionary course can be interrupted or even reversed by merging especially at intermediate redshift, as predicted by Cavaliere et al. (2011b). In fact, a merger has rejuvenated the ICM of this cluster at z~0.45 by reestablishing a high entropy state in the outskirts, while leaving intact or erasing only partially the low-entropy, cool core at the center.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
308 - Ole Host , Steen H. Hansen 2009
The distribution of mass in the halos of galaxies and galaxy clusters has been probed observationally, theoretically, and in numerical simulations. Yet there is still confusion about which of several suggested parameterized models is the better repre sentation, and whether these models are universal. We use the temperature and density profiles of the intracluster medium as measured by X-ray observations of 11 relaxed galaxy clusters to investigate mass models for the halo using a thorough Bayesian statistical analysis. We make careful comparisons between two- and three-parameter models, including the issue of a universal third parameter. We find that, of the two-parameter models, the NFW is the best representation, but we also find moderate statistical evidence that a generalized three-parameter NFW model with a freely varying inner slope is preferred, despite penalizing against the extra degree of freedom. There is a strong indication that this inner slope needs to be determined for each cluster individually, i.e. some clusters have central cores and others have steep cusps. The mass-concentration relation of our sample is in reasonable agreement with predictions based on numerical simulations.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wid e-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
We jointly analyze Bolocam Sunyaev-Zeldovich (SZ) effect and Chandra X-ray data for a set of 45 clusters to derive gas density and temperature profiles without using spectroscopic information. The sample spans the mass and redshift range $3 times 10^ {14} M_{odot} le M_{500} le 25 times 10^{14} M_{odot}$ and $0.15le z le 0.89$. We define cool-core (CC) and non-cool core (NCC) subsamples based on the central X-ray luminosity, and 17/45 clusters are classified as CC. In general, the profiles derived from our analysis are found to be in good agreement with previous analyses, and profile constraints beyond $r_{500}$ are obtained for 34/45 clusters. In approximately 30% of the CC clusters our analysis shows a central temperature drop with a statistical significance of $>3sigma$; this modest detection fraction is due mainly to a combination of coarse angular resolution and modest S/N in the SZ data. Most clusters are consistent with an isothermal profile at the largest radii near $r_{500}$, although 9/45 show a significant temperature decrease with increasing radius. The sample mean density profile is in good agreement with previous studies, and shows a minimum intrinsic scatter of approximately 10% near $0.5 times r_{500}$. The sample mean temperature profile is consistent with isothermal, and has an intrinsic scatter of approximately 50% independent of radius. This scatter is significantly higher compared to earlier X-ray-only studies, which find intrinsic scatters near 10%, likely due to a combination of unaccounted for non-idealities in the SZ noise, projection effects, and sample selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا