ترغب بنشر مسار تعليمي؟ اضغط هنا

Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions

47   0   0.0 ( 0 )
 نشر من قبل Takashi Nishikawa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synchronization, in which individual dynamical units keep in pace with each other in a decentralized fashion, depends both on the dynamical units and on the properties of the interaction network. Yet, the role played by the network has resisted comprehensive characterization within the prevailing paradigm that interactions facilitating pair-wise synchronization also facilitate collective synchronization. Here we challenge this paradigm and show that networks with best complete synchronization, least coupling cost, and maximum dynamical robustness, have arbitrary complexity but quantized total interaction strength that constrains the allowed number of connections. It stems from this characterization that negative interactions as well as link removals can be used to systematically improve and optimize synchronization properties in both directed and undirected networks. These results extend the recently discovered compensatory perturbations in metabolic networks to the realm of oscillator networks and demonstrate why less can be more in network synchronization.

قيم البحث

اقرأ أيضاً

The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts $|Delta T/T_g| < 0.012$. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.
We carefully investigate the two fundamental assumptions in the Stillinger-Weber analysis of the inherent structures (ISs) in the energy landscape and come to conclude that they cannot be validated. This explains some of the conflicting results betwe en their conclusions and some recent rigorous and exact results. Our analysis shows that basin free energies, and not ISs, are useful for understanding glasses.
116 - P. E. Jonsson , H. Yoshino , 2002
Reply to the Comment by L. Berthier and J.-P. Bouchaud, Phys. Rev. Lett. 90, 059701 (2003), also cond-mat/0209165, on our paper Phys. Rev. Lett. 89, 097201 (2002), also cond-mat/0203444
We consider synchronization of weighted networks, possibly with asymmetrical connections. We show that the synchronizability of the networks cannot be directly inferred from their statistical properties. Small local changes in the network structure c an sensitively affect the eigenvalues relevant for synchronization, while the gross statistical network properties remain essentially unchanged. Consequently, commonly used statistical properties, including the degree distribution, degree homogeneity, average degree, average distance, degree correlation, and clustering coefficient, can fail to characterize the synchronizability of networks.
In this letter, we perform a sensitivity analysis on the master stability function approach for the synchronization of networks of coupled dynamical systems. More specifically, we analyze the linear stability of a nearly synchronized solution for a n etwork of coupled dynamical systems, for which the individual dynamics and output functions of each unit are approximately identical and the sums of the entries in the rows of the coupling matrix slightly deviate from zero. The motivation for this parametric study comes from experimental instances of synchronization in human-made or natural settings, where ideal conditions are difficult to observe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا