ترغب بنشر مسار تعليمي؟ اضغط هنا

Only the Lonely: HI Imaging of Void Galaxies

126   0   0.0 ( 0 )
 نشر من قبل Kathryn Stanonik
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have completed a pilot survey imaging 15 SDSS selected void galaxies in HI in local (d=50 to 100 Mpc) voids. This small sample makes up a surprisingly interesting collection of galaxies, consisting of galaxies with asymmetric and perturbed HI disks, previously unidentified companions, and ongoing interactions. One was found to have a polar HI disk with no stellar counterpart. While our small number statistics so far are limiting, results support past findings that most void galaxies are typically late type galaxies with gas rich disks and small scale clustering similar to field galaxies despite their large scale underdense environment.



قيم البحث

اقرأ أيضاً

Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the HI imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in HI in local (d < 100 Mpc) voids. HI masses range from 3.5 x 10^8 to 3.8 x 10^9 M_sun, with one nondetection with an upper limit of 2.1 x 10^8 M_sun. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control sample of galaxies while still resolving individual galaxy kinematics and detecting faint companions in HI. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed HI disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar HI disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.
237 - A. Kniazev 2010
Does the void environment have a sizable effect on the evolution of dwarf galaxies? If yes, the best probes should be the most fragile least massive dwarfs. We compiled a sample of about one hundred dwarfs with M_B in the range -12 to -18 mag, fallin g within the nearby Lynx-Cancer void. The goal is to study their evolutionary parameters -- gas metallicity and gas mass-fraction, and to address the epoch of the first substantial episode of Star Formation. Here we present and discuss the results of O/H measurements in 38 void galaxies, among which several the most metal-poor galaxies are found with the oxygen abundances of 12+log(O/H)=7.12-7.3 dex.
182 - Rene Andrae , Knud Jahnke 2011
Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understand the formation of this type of galaxies. The tidal-torque theory tries to explain this acquisition process in a cosmological framework an d predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness on distances of 1Mpc/h. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering such correlations but did not account for errors in redshift, ellipticity and morphological classifications. We explain how to rigorously propagate all important errors. Analysing disc galaxies in the SDSS database, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distances of 1Mpc/h are plausible but not statistically significant. This result agrees with a simple hypothesis test in the Local Group, where we find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e., PanSTARRS and LSST cannot be used. We also discuss potentials and problems of front-edge classifications of galaxy discs in order to improve estimates of angular-momentum orientation.
Majority of all galaxies reside in groups of less than 50 member galaxies. These groups are distributed in various large-scale environments from voids to superclusters. Evolution of galaxies is affected by the environment in which they reside. Our ai m is to study the effects that the local group scale and the supercluster scale environment have on galaxies. We use a luminosity-density field to determine density of the large-scale environment of galaxies in groups of various richness. We calculate fractions of different types of galaxies in groups with richnesses up to 50 member galaxies and in different large-scale environments from voids to superclusters. The fraction of passive elliptical galaxies rises and the fraction of star-forming spiral galaxies declines when the richness of a group of galaxies rises from two to approximately ten galaxies. On the large scale, the passive elliptical galaxies become more numerous than star-forming spirals when the environmental density grows to the density level typical for superclusters. The large-scale environment affects the level of these fractions in groups: galaxies in equally rich groups are more likely to be elliptical in supercluster environments than in lower densities. The crossing point, where the number of passive and star-forming galaxies is equal, happens in groups with lower richness in superclusters than in voids. Galaxies in low-density areas require richer groups to evolve from star-forming to passive. Groups in superclusters are on average more luminous than groups in large-scale environments with lower density. Our results suggest that the evolution of galaxies is affected by both, by the group in which the galaxy resides, and by its large-scale environment. Galaxies in lower-density regions develop later than galaxies in similar mass groups in high-density environments.
Context. Void population consists mainly of late-type and low surface brightness (LSB) dwarf galaxies whose atomic hydrogen is the main component of their baryonic matter. Therefore, observations of void galaxy HI are mandatory in order to understand their evolution and dynamics. Aims. Our aim was to obtain integrated HI parameters for a fainter part of the nearby Lynx-Cancer void galaxy sample (total of 45 objects) with the Nancay Radio Telescope (NRT) and to conduct the comparative analysis of all the 103 void galaxies with known HI data with a sample of similar galaxies residing in denser environments of the Local Volume. Methods. For HI observations we used the NRT with its sensitive antenna/receiver system FORT and standard processing. The comparison of the void and control samples on the parameter M(HI)/L_B is conducted with the non-parametric method `The 2x2 Contingency Table test. Results. We obtained new HI data for about 40% of the Lynx-Cancer galaxy sample. Along with data from the literature, we use these new data for further analysis of 103 void objects. The proxy of the evolutional parameter M(HI)/L_B of the void sample is compared with that of 82 galaxies of morphological types 8--10 residing in the Local Volume (LV) groups and aggregates. Conclusions. At the confidence level of P = 0.988, we conclude that for the same luminosity, these void galaxies are systematically gas-richer, on average by ~39%. This result is consistent with the authors earlier conclusion on the smaller gas metallicities and evidence for the slower low-mass galaxy evolution in voids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا