ﻻ يوجد ملخص باللغة العربية
We introduce a version of the Hamiltonian formalism based on the Clairaut equation theory, which allows us a self-consistent description of systems with degenerate (or singular) Lagrangian. A generalization of the Legendre transform to the case, when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the initial Lagrange equations, but contains nondynamical momenta and unresolved velocities. This system is reduced to the physical phase space and presented in the Hamiltonian form by introducing a new (non-Lie) bracket.
We formulate singular classical theories without involving constraints. Applying the action principle for the action (27) we develop a partial (in the sense that not all velocities are transformed to momenta) Hamiltonian formalism in the initially re
A formulation of singular classical theories (determined by degenerate Lagrangians) without constraints is presented. A partial Hamiltonian formalism in the phase space having an initially arbitrary number of momenta (which can be smaller than the nu
We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adj
In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum sys
In previous papers, a geometric framework has been developed to describe non-conservative field theories as a kind of modified Lagrangian and Hamiltonian field theories. This approach is that of $k$-contact Hamiltonian systems, which is based on the