ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature spin glass fluctuations: expanding around a spherical approximation

114   0   0.0 ( 0 )
 نشر من قبل Andrea Crisanti
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin glass behavior near zero temperature is a complicated matter. To get an easier access to the spin glass order parameter $Q(x)$ and, at the same time, keep track of $Q_{ab}$, its matrix aspect, and hence of the Hessian controlling stability, we investigate an expansion of the replicated free energy functional around its ``spherical approximation. This expansion is obtained by introducing a constraint-field and a (double) Legendre Transform expressed in terms of spin correlators and constraint-field correlators. The spherical approximation has the spin fluctuations treated with a global constraint and the expansion of the Legendre Transformed functional brings them closer and closer to the Ising local constraint. In this paper we examine the first contribution of the systematic corrections to the spherical starting point.



قيم البحث

اقرأ أيضاً

We study the spectrum of the Hessian of the Sherrington-Kirkpatrick model near T=0, whose eigenvalues are the masses of the bare propagators in the expansion around the mean-field solution. In the limit $Tll 1$ two regions can be identified. The firs t for $x$ close to 0, where $x$ is the Parisi replica symmetry breaking scheme parameter. In this region the spectrum of the Hessian is not trivial, and maintains the structure of the full replica symmetry breaking state found at higher temperatures. In the second region $Tll x leq 1$ as $Tto 0$, the bands typical of the full replica symmetry breaking state collapse and only two eigenvalues are found: a null one and a positive one. We argue that this region has a droplet-like behavior. In the limit $Tto 0$ the width of the full replica symmetry breaking region shrinks to zero and only the droplet-like scenario survives.
In a region above the Almeida-Thouless line, where we are able to control the thermodynamic limit of the Sherrington-Kirkpatrick model and to prove replica symmetry, we show that the fluctuations of the overlaps and of the free energy are Gaussian, o n the scale N^{-1/2}, for N large. The method we employ is based on the idea, we recently developed, of introducing quadratic coupling between two replicas. The proof makes use of the cavity equations and of concentration of measure inequalities for the free energy.
The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts $|Delta T/T_g| < 0.012$. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space di mensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: the first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the replica symmetry breaking picture of the spin-glass phase from the droplet picture, finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
We have performed depth dependent muon spin rotation/relaxation studies of the dynamics of single layer films of {it Au}Fe and {it Cu}Mn spin glasses as a function of thickness and of its behavior as a function of distance from the vacuum interface ( 5-70 nm). A significant reduction in the muon spin relaxation rate as a function of temperature with respect to the bulk material is observed when the muons are stopped near (5-10 nm) the surface of the sample. A similar reduction is observed for the whole sample if the thickness is reduced to e.g. 20 nm and less. This reflects an increased impurity spin dynamics (incomplete freezing) close to the surface although the freezing temperature is only modestly affected by the dimensional reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا