ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter and Galaxy Formation

135   0   0.0 ( 0 )
 نشر من قبل Joel R. Primack
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joel R. Primack




اسأل ChatGPT حول البحث

The four lectures that I gave in the XIII Ciclo de Cursos Especiais at the National Observatory of Brazil in Rio in October 2008 were (1) a brief history of dark matter and structure formation in a LambdaCDM universe; (2) challenges to LambdaCDM on small scales: satellites, cusps, and disks; (3) data on galaxy evolution and clustering compared with simulations; and (4) semi-analytic models. These lectures, themselves summaries of much work by many people, are summarized here briefly.



قيم البحث

اقرأ أيضاً

We have resimulated the six galaxy-sized haloes of the Aquarius Project including metal-dependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this r esponse is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with $ beta approx 0.1-02$, while others retain the anisotropy structure of their baryon-fre
We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutri nos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
We use the Copernicus Complexio (COCO) high resolution $N$-body simulations to investigate differences in the properties of small-scale structures in the standard cold dark matter (CDM) model and in a model with a cutoff in the initial power spectrum of density fluctuations consistent with both a thermally produced warm dark matter (WDM) particle or a sterile neutrino with mass 7 keV and leptogenesis parameter $L_6=8.7$. The latter corresponds to the coldest model with this sterile neutrino mass compatible with the identification of the recently detected 3.5 keV X-ray line as resulting from particle decay. CDM and WDM predict very different number densities of subhaloes with mass $leq 10^9,h^{-1},M_odot$ although they predict similar, nearly universal, normalised subhalo radial density distributions. Haloes and subhaloes in both models have cuspy NFW profiles, but WDM subhaloes below the cutoff scale in the power spectrum (corresponding to maximum circular velocities $V_{mathrm{max}}^{z=0} leq50~mathrm{kms}^{-1}$) are less concentrated than their CDM counterparts. We make predictions for observable properties using the GALFORM semi-analytic model of galaxy formation. Both models predict Milky Way satellite luminosity functions consistent with observations, although the WDM model predicts fewer very faint satellites. This model, however, predicts slightly more UV bright galaxies at redshift $z>7$ than CDM, but both are consistent with observations. Gravitational lensing offers the best prospect of distinguishing between the models.
65 - Jian-hua He 2019
We investigate how a property of a galaxy correlates most tightly with a property of its host dark matter halo, using state-of-the-art hydrodynamical simulations of galaxy formation EAGLE, Illustris, and IllustrisTNG. Unlike most of the previous work , our analyses focus on all types of galaxies, including both central and satellite galaxies. We find that the stellar mass of a galaxy at the epoch of the peak circular velocity with an evolution correction gives the tightest such correlation to the peak circular velocity $V_{rm peak}$ of the galaxys underling dark matter halo. The evolution of galaxy stellar mass reduces rather than increases scatter in such a relation. We also find that one major source of scatter comes from star stripping due to the strong interactions between galaxies. Even though, we show that the size of scatter predicted by hydrodynamical simulations has a negligible impact on the clustering of dense $V_{rm peak}$-selected subhalo from simulations, which suggests that even the simplest subhalo abundance matching (SHAM), without scatter and any additional free parameter, can provide a robust prediction of galaxy clustering that can agree impressively well with the observations from the SDSS main galaxy survey.
76 - Mark R.Lovell 2015
The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, $L_6$, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than $2times10^{12}M_{odot}$ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of $L_6$ for $M_sle 8$~keV. We also show that the range of $L_6$ that is in best agreement with the 3.5~keV line (if produced by decays of 7~keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than $1.5times10^{12}M_{odot}$. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel~et~al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا