ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation of nonequilibrium processes in p+Ni system with beam energy

57   0   0.0 ( 0 )
 نشر من قبل Bogus{\\l}aw Kamys
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy and angular dependence of double differential cross sections dsigma/dOmega dE were measured for p, d, t, 3,4He, 6,7Li, 7,9Be, and 10,11B produced in collisions of 0.175 GeV protons with Ni target. The analysis of measured dfferential cross sections allowed to extract total production cross sections for ejectiles listed above. The shape of the spectra and angular distributions indicate the presence of other nonequilibrium processes besides the emission of nucleons from the intranuclear cascade, and besides the evaporation of various particles from remnants of intranuclear cascade. These nonequilibrium processes consist of coalescence of nucleons into light charged particles during the intranuclear cascade, of the fireball emission which contributes to the cross sections of protons and deuterons, and of the break-up of the target nucleus which leads to the emission of intermediate mass fragments. All such processes were found earlier at beam energies 1.2, 1.9, and 2.5 GeV for Ni as well as for Au targets, however, significant differences in properties of these processes at high and low beam energy are observed in the present study.

قيم البحث

اقرأ أيضاً

The energy and angular dependence of double differential cross sections d2sigma/dOmega dE were measured for p, d, t, 3,4,6He, 6,7,8Li, 7,9,10Be, 10,11B, and C produced in collisions of 1.2, 1.9, and 2.5 GeV protons with a Ni target. The shape of the spectra and angular distributions does almost not change whereas the absolute value of the cross sections increases by a factor about 1.7 for all ejectiles in this beam energy range. It was found that energy and angular dependencies of the cross sections cannot be reproduced by the microscopic model of intranuclear cascade with coalescence of nucleons and the statistical model for evaporation of particles from excited, equilibrated residual nuclei. The inclusion of nonequilibrium processes, described by a phenomenological model of the emission from fast and hot moving sources, resulting from break-up of the target nucleus by impinging proton, leads to very good reproduction of data. Cross sections of these processes are quite large, exhausting approximately half of the total production cross sections. Due to good reproduction of energy and angular dependencies of d2sigma/dOmega dE by model calculation it was possible to determine total production cross sections for all studied ejectiles. Results obtained in this work point to the analogous reaction mechanism for proton induced reactions on Ni target as that observed previously for Au target in the same beam energy range.
$phi$ and K$^-$ mesons from Ni+Ni collisions at the beam energy of 1.91A GeV have been measured by the FOPI spectrometer, with a trigger selecting central and semi-central events amounting to 51% of the total cross section. The phase space distributi ons, and the total yield of K$^-$, as well as the kinetic energy distribution and the total yield of $phi$ mesons are presented. The $phi$K$^-$ ratio is found to be $0.44 pm 0.07(text{stat}) ^{+0.18}_{-0.12} (text{syst})$, meaning that about 22% of K$^-$ mesons originate from the decays of $phi$ mesons, occurring mostly in vacuum. The inverse slopes of direct kaons are up to about 15 MeV larger than the ones extracted within the one-source model, signalling that a considerable share of gap between the slopes of K$^+$ and K$^-$ could be explained by the contribution of $phi$ mesons to negative kaons.
The energy and angular dependence of double differential cross sections was measured for p,d,t,He,Li,Be, and B isotopes produced in collisions of 1.2 and 1.9 GeV protons with Au target. The shape of the spectra and angular distributions almost does n ot change in the beam energy range from 1.2 to 2.5 GeV, however, the absolute value of the cross sections increases for all ejectiles. A phenomenological model of two emitting, moving sources reproduces very well spectra and angular distributions of intermediate mass fragments. Double differential cross sections for light charged particles (LCP) were analyzed in the frame of the microscopic model of intranuclear cascade (INC) with coalescence of nucleons and statistical model for evaporation of particles from excited residual nuclei. Energy and angular dependencies of data agree satisfactorily neither with predictions of microscopic intranuclear cascade calculations for protons, nor with coalescence calculations for other LCP. Phenomenological inclusion of another reaction mechanism - emission of LCP from a fireball, i.e., fast and hot moving source - combined with the microscopic model calculations of INC, coalescence and evaporation of particles leads to very good description of the data. It was found that nonequilibrium processes are very important for production of LCP. They exhaust 40-80% of the total cross sections - depending on the emitted particles. Coalescence and fireball emission give comparable contributions to the cross sections with exception of 3He data where coalescence clearly dominates. The ratio of sum of all nonequilibrium processes to those proceeding through stage of statistical equilibrium does almost not change in the beam energy range from 1.2 GeV to 2.5 GeV for all light charged particles.
We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^ 0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.
The total production cross sections of light charged particles (LCPs), intermediate mass fragments (IMFs) and heavy reaction products of p+Ni collisions available in the literature have been compared with predictions of a two-step model in the proton beam energy range from reaction threshold up to approximately 3 GeV. Model cross sections were calculated assuming, that the reaction proceeds via an intranuclear cascade of nucleon-nucleon collisions followed by evaporation of particles from an equilibrated, heavy target residuum. The shape of the excitation functions was well described by model calculations for all reaction products. The magnitude of the cross sections was reasonably well reproduced for heavy reaction products, i.e. for nuclei heavier than Al, but the cross sections for lighter products were systematically underestimated. This fact was used as an argument in favor of a significant break-up contribution to the reaction mechanism. The present conclusions are supported by recently published results of investigations of differential cross sections in p+Ni collisions, which showed that hypothesis of the break-up of target nucleus is indispensable for a good reproduction of d2 sigma/dOmega dE for LCPs and IMFs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا