ﻻ يوجد ملخص باللغة العربية
Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are expressed by a series that has a remarkable behavior of convergence. Among other results, we show the computation of the three-body expectation value at finite temperature, a quantity that rules the recombination rate of the Bose gas.
The repulsive Lieb-Liniger model can be obtained as the non-relativistic limit of the Sinh-Gordon model: all physical quantities of the latter model (S-matrix, Lagrangian and operators) can be put in correspondence with those of the former. We use th
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for th
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version th
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt e
We continue our study of the emergence of Non-Equilibrium Steady States in quantum integrable models focusing on the expansion of a Lieb-Liniger gas for arbitrary repulsive interaction. As a first step towards the derivation of the asymptotics of obs