ترغب بنشر مسار تعليمي؟ اضغط هنا

iShocks: X-ray binary jets with an internal shocks model

73   0   0.0 ( 0 )
 نشر من قبل Omar Jamil
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Jamil -




اسأل ChatGPT حول البحث

In the following paper we present an internal shocks model, iShocks, for simulating a variety of relativistic jet scenarios; these scenarios can range from a single ejection event to an almost continuous jet, and are highly user configurable. Although the primary focus in the following paper is black hole X-ray binary jets, the model is scale and source independent and could be used for supermassive black holes in active galactic nuclei or other flows such as jets from neutron stars. Discrete packets of plasma (or `shells) are used to simulate the jet volume. A two-shell collision gives rise to an internal shock, which acts as an electron re-energization mechanism. Using a pseudo-random distribution of the shell properties, the results show how for the first time it is possible to reproduce a flat/inverted spectrum (associated with compact radio jets) in a conical jet whilst taking the adiabatic energy losses into account. Previous models have shown that electron re-acceleration is essential in order to obtain a flat spectrum from an adiabatic conical jet: multiple internal shocks prove to be efficient in providing this re-energization. We also show how the high frequency turnover/break in the spectrum is correlated with the jet power, $ u_b propto L_{textrm W}^{sim 0.6}$, and the flat-spectrum synchrotron flux is correlated with the total jet power, $F_{ u}propto L_{textrm W}^{sim 1.4}$. Both the correlations are in agreement with previous analytical predictions.

قيم البحث

اقرأ أيضاً

Gamma-ray emission at energies >100MeV has been detected from nine novae using the Fermi-LAT, and it can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. The 100MeV gamma-ray emission arises predominantly from particles accelerated up to ~100GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The internal shock model can account for the gamma-ray emission of the novae detected by Fermi-LAT, including the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining. (abridged version)
The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 201 8 November and 2019 May, along with radio observations conducted with the VLA and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is $sim 10^{41}$ erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.
We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the dis tribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence expected from the IC-CMB model. For a subset of our sample with known superluminal motion based on VLBI observations, we estimate the angle of the kpc-scale jet to the line of sight by considering the additional information in the bends observed between pc- and kpc-scale jets. These angles are sometimes much smaller than estimates based on the IC-CMB model with a Lorentz factor of 15, indicating that these jets may decelerate significantly from pc scales to kpc scales.
371 - Maddalena Spada 2000
The development of instabilities leading to the formation of internal shocks is expected in the relativistic outflows of both gamma-ray bursts and blazars. The shocks heat the expanding ejecta, generate a tangled magnetic field and accelerate leptons to relativistic energies. While this scenario has been largely considered for the origin of the spectrum and the fast variability in gamma-ray bursts, here we consider it in the contest of relativistic jets of blazars. We calculate the expected spectra, light curves and time correlations between emission at different wavelengths. The dynamical evolution of the wind explains the minimum distance for dissipation (~10^{17} cm) to avoid $gamma$--$gamma$ collisions and the low radiative efficiency required to transport most of the kinetic energy to the extended radio structures. The internal shock model allows to follow the evolution of changes, both dynamical and radiative, along the entire jet, from the inner part, where the jet becomes radiative and emits at high energies ($gamma$-jet), to the parsec scale, where the emission is mostly in the radio band (radio-jet). We have produced some animations that can be found at http://www.merate.mi.astro.it/~lazzati/3C279/, in which the temporal and spectral informations are shown together.
84 - P. H. Sell 2010
We report the discovery of multi-scale X-ray jets from the accreting neutron star X-ray binary, Circinus X-1. The bipolar outflows show wide opening angles and are spatially coincident with the radio jets seen in new high-resolution radio images of t he region. The morphology of the emission regions suggests that the jets from Circinus X-1 are running into a terminal shock with the interstellar medium, as is seen in powerful radio galaxies. This and other observations indicate that the jets have a wide opening angle, suggesting that the jets are either not very well collimated or precessing. We interpret the spectra from the shocks as cooled synchrotron emission and derive a cooling age of approximately 1600 yr. This allows us to constrain the jet power to be between 3e35 erg/s and 2e37 erg/s, making this one of a few microquasars with a direct measurement of its jet power and the only known microquasar that exhibits stationary large-scale X-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا